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Abstract

Methods and algorithms for event reconstruction in the CBM experiment are
described. All these results have been developed and presented by the LIT team on
CBM collaboration meetings in years 2004-2005.

The CBM Collaboration [1] builds a dedicated heavy-ion experiment to investigate
the properties of highly compressed baryonic matter as it is produced in nucleus-nucleus
collisions at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany.
The scientific goal of the research program of the CBM experiment is to explore the phase
diagram of strongly interacting matter in the region of highest baryon densities. This
approach is complementary to the activities at RHIC (Brookhaven) and ALICE (CERN-
LHC) which concentrate on the region of high temperatures and very low net baryon
densities.

The experimental setup has to fulfil the following requirements: identification of
electrons which requires a pion suppression factor of the order of 105; identification of
hadrons with large acceptance; determination of the primary and secondary vertices (ac-
curacy ∼30 µm); high granularity of the detectors; fast detector response and read-out;
very small detector dead time; high-speed trigger and data acquisition; radiation hard
detectors and electronics; tolerance towards delta-electrons.

Fig. 1 depicts the present layout of the CBM experimental setup. Inside the dipole
magnet gap are the target and a 7-planes Silicon Tracking System (STS) consisting of pixel
and strip detectors. The Ring Imaging Cherenkov detector (RICH) has to detect elec-
trons. The Transition Radiation Detector (TRD) arrays measure electrons with momen-
tum above 1 GeV. The TOF stop detector consists of Resistive Plate Chambers (RPC).
The Electromagnetic Calorimeter (ECAL) measures electrons, photons and muons. The
CBM setup is optimized for heavy-ion collisions in the beam energy range from about 8
to 45 AGeV. The typical central Au+Au collision in the CBM experiment will produce
up to 700 tracks in the inner tracker (see Fig. 2). Large track multiplicities together
with the presence of a non-homogeneous magnetic field make the reconstruction of events
extremely complicated. It comprises local track finding and fitting in the STS and TRD,
ring finding in RICH, cluster reconstruction in ECAL, global matching between STS,
RICH, TRD, TOF and ECAL, and the reconstruction of primary and secondary vertices.
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Therefore the collaboration performs an extensive analysis of different track recognition
methods in order to understand better the geometry of the detector and to investigate
specific features of accepted events [1].

Fig.1. CBM general layout Fig.2. Visualization of a typical CBM event

1. The track reconstruction problem can be split into track finding and track fit-
ting. Different competitive approaches to both track finding and the reconstruction of
the initial track parameters were applied by the LIT specialists. For the track finding 3D
track following and cellular automaton methods have been used. The Kalman filter and
global fitting methods like the polynomial approximation are applied to the problem of
momentum reconstruction. The Kalman filter was also used for the determination of the
primary and secondary vertices.

1.1. 3D track-following method
The track-following method reconstructs tracks based on the hits measured in the STS
tracking stations. The algorithm should be stable with respect to initial vertex coordinates
and the STS geometry. We used some approaches known from [2]. The track recognition
procedure is accomplished in 3D space on both x-z and y-z projections simultaneously.
The procedure alternates between both views, predicting a track position on the next
station and searching for hits in the vicinity of the predicted position. Starting from the
middle of the target area, this point is sequentially connected with all hits in the first
station in y-z view, where tracks are close to straight lines (see Fig. 3). The straight
lines driven via these two points are prolonged to the plane of the second station. All
hits in an asymmetrical corridor around the intersection point are then used for fitting a
parabola in x-z view which is prolonged to the next station. Since several prolongations
can happen, we set aside corridors around each point predicted on the third station. A
similar corridor is set in the y-z view on the third station. If hits are found in those limits,
they are attached to the track. The method continues the track prolongation and searching
for hits in corridors around the predicted position towards the outer stations. Each
new parabolic prolongation is done with the corresponding curvature radius r calculated
taking the magnetic field into account (see Fig. 4). The high accuracy predictor
is based on special tables with confidence bounds of prediction corridors. These tables
are calculated preliminary on the basis of the distributions of deviations between real hit
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positions and their predictions. Calculations have to be done by Monte-Carlo simulations
of a considered sample of heavy-ion events in the STS for all stations.

Fig.3. Prediction and search in YoZ view Fig.4. Prediction and search in YoZ view
taking into account the local track curvature

On the data simulated for the initial STS deign based on hybrid pixel stations, 3D
track following approach has shown quite a satisfactory efficiency on the level 92-96% and
a very low level of ghost tracks, but for the most recent STS design with the first three
stations constructed on the MAPS technology and the other 4 stations based on silicon
strip wafers its efficiency felt down drastically demanding a more elaborated predictor.

Much better results were obtained by the second track reconstruction procedure
based on a combination of a cellular automaton application for track-element recogni-
tions and Kalman filter as a predictor.

1.2. Cellular Automaton based track finding
The cellular automaton method [3, 4] creates short track segments (tracklets) in neigh-
bouring detector planes and strings them into tracks (see Fig. 5). Being essentially local
and parallel, cellular automata avoid exhaustive combinatorial searches, even when im-
plemented on conventional computers. Since cellular automata operate with highly struc-
tured information, the amount of data to be processed in the course of the track search
is significantly reduced. As a rule, cellular automata employ a very simple track model
which leads to utmost computational simplicity and a fast algorithm. By definition, the
reconstructed track is assigned to a generated particle, if at least 70% of its hits have
been caused by this particle. A generated particle is regarded as found, if it has been
assigned to at least one reconstructed track. If the particle is found more than once, all
additionally reconstructed tracks are regarded as clones. The reconstructed track is called
a ghost, if it is not assigned to any generated particle (70% criteria). The efficiency of
track reconstruction for particles detected in at least four stations is presented in Fig. 6.
Tracks of high momentum particles are reconstructed very well with efficiencies of 99.45%,
while multiple scattering in detector material leads to a lower reconstruction efficiency
of 89.46% for slow particles. The reconstruction efficiency for fast primary tracks with
momentum higher than 1 GeV/c is almost 100%, while the efficiency of all fast tracks
is slightly lower because of the presence of secondary tracks, originating far downstream
from the target region. The total efficiency for all tracks with a large fraction of soft
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secondary tracks is 96.98%. The clone rate is not a problem for the algorithm (0.01%).
the ghost level is at 0.61%.

Fig.5. A simple illustration of the cellular
automaton algorithm. It creates tracklets,
links and numbers them as possibly situated
on the same trajectory, and collects tracklets
into track candidates

Fig.6. Track reconstruction efficiency as a
function of momentum

2. Track and vertex fitting have been done using the Kalman filter based procedures
[1, 6]. Propagation of tracks in non-homogeneous magnetic field is based on a specially
developed analytic formula [7, 8]. Mean relative momentum resolution for all tracks
is 0.69%. Secondary tracks from D0 decay being longer have slightly better momentum
resolution of 0.67%. After the primary vertex is reconstructed, tracks identified as primary
can be refitted with an additional constraint to the primary vertex position. This improves
their average track momentum resolution to 0.63%.

The primary vertex was determined from all tracks reconstructed in the STS
excluding those which formed well detached vertices like K0

S and Λ decays. The Kalman
filter based algorithm reconstructs the primary vertex with the accuracy of 4 µm for
the longitudinal and better than 1 µm for transversal components of the primary vertex
position.

Precision of the secondary vertex parameters obtained in the geometrical vertex
fit can be improved by taking into account several assumptions on tracks associated to the
vertex. Two types of constraints have been included into the secondary vertex fit: a mass
constraint and a topological constraint. The mass constraint is usually applied in the case
of one or several combinations of particles in the vertex are known to originate from a
narrow width mass state. The topological constraint is used to point a mother particle to
the (already reconstructed) primary vertex. The final accuracy is 44.4 µm for the longitu-
dinal and 1.7 µm for transversal components of the secondary vertex position for D0 decay.

3. Momentum estimation has been realized by two approaches: polynomial approxi-
mations and orthogonal polynomial sets.

3.1. Polynomial approximations
This algorithm reconstructs the particle momentum directly from the hits in the Silicon
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Tracking System (STS). It consists of two steps. First, the track curve is fitted by a
polynomial vector function, using the smoothness of the trajectory. Three types of ap-
proximation were applied: polynomials, cubic splines and B-splines. The optimisation
problem is described by the residual function

F =
N
∑

i=0
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ŷ(zi) − yi

σi
y

)2


 ,

where xi, yi are the trajectory hits, x̂(z), ŷ(z) the coordinate approximations, σi
x, σi

y are
the measurement errors, and N – the number of hits in the tracking system. It should
be noted that F is a quadratic functional of the parameters describing the coordinate
functions x̂(z), ŷ(z). This means that the optimization problem is reduced to a very
fast procedure of multiplication of an a priory prepared matrix with the vectors of hit
coordinates.

In the second step, the constructed functions x̂(z), ŷ(z) are used to determine the
approximate value of the momentum. The momentum reconstruction is based on the
equations of motion:
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where p and q are momentum and charge of the particle, respectively, and Bx, By, Bz

the components of the nonuniform magnetic field in the point (x, y, z); xz, yz and xzz, yzz

denote the first and second derivatives of x and y with respect to z, respectively. With
the density function
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the approximated value p is derived as the inverse of minimising functional

G(α) =

ze
∫

zb

f(α, z, x̂(z), ŷ(z))g(z)dz,

where g(z) is a weight function and zb, ze are the z coordinates of the first and last STS
detector, respectively. Since G(α) is a quadratic functional of the parameter α, a fast
non-iterative procedure for the evaluation of p can be constructed.

This algorithm has been applied to simulated tracks in the momentum range 1 - 10
GeV/c with hits in all seven stations of the STS. Ideal track finding was assumed. The
first and second momenta of the relative momentum residual distributions are summarized
in Table 1. While in the absence of multiple scattering (MS), the spline approximations
give better results, the performance in the presence of multiple scattering is similar for
all three approximations (σp = 0.75-0.80 %).

3.2. Orthogonal polynomial sets
The method of accurate momentum reconstruction with orthogonal polynomial sets con-
structs an explicit function which gives the momentum in terms of measurable quantities:
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Table 1: Mean and RMS of the momentum residual distributions

Track model <∆p

p
> [%] <

σp

p
> [%] <∆p

p
> [%] <

σp

p
> [%]

no MS no MS MS MS
polynomial -0.02 0.28 -0.02 0.76
cubic spline 0.08 0.17 0.09 0.79

B spline 0.01 0.16 0.00 0.78

position and direction of a track at the entrance of the spectrometric field and the deflec-
tion angle as the effect of the field onto the track momentum [9]-[11]. This experimental
input information can be provided e. g. by a Kalman filter operating on hits registered
in the CBM silicon tracking system (STS).

In inhomogeneous magnetic field ϕ is a function of p, position and direction of a
charged particle at the magnet entrance

ϕ = ϕ(X1, Y1, Ax, Ay, p), (1)

(X1, Y1, Z1) is the point in the first STS, (Ax, Ay) are the tangents of the particle trajectory
in this point. The task is to construct the inverse function

p = p(X1, Y1, Ax, Ay, ϕ), (2)

which provides accurate momenta restoration [11].
The procedure consists of two steps:

1. The deflection angles for the given magnetic field are calculated for a set of repre-
sentative trajectories.

2. The explicit function (2) is then constructed on the basis of these trajectories.

Each trajectory is defined by five variables:

1. (x1 = X1, y1 = Y1) - coordinates of a point in the first STS;

2. (x3 = Ax, x4 = Ay) - tangents of a particle trajectory in the point (X1, Y1);

3. x5 = 1/(p · c), p is the particle momentum, c - speed of light.

Let [Ai, Bi] be the range of i-th variable: i = 1, 2, ..., 5. Each variable is normalized
to the range [-1, +1]

gi =
2xi − Ai − Bi

Bi − Ai

(3)

and a discrete number of “nodes”, according to the Tchebycheff distribution

gi = gi(αi) = cos
(2αi − 1)π

2Ni

, αi = 1, ..., Ni, i = 1, ..., 5,

is chosen. The set of N1, N2, ..., N5 determines the collection of fixed trajectories,
which are traced through the magnetic field, and the set of corresponding deflections
ϕ(x1, x2, x3, x4, x5) is calculated.
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Let the range of ϕ(·) be [A6, B6]; ϕ(·) is also normalized to the range [-1, +1]:

g6 =
2ϕ − A6 − B6

B6 − A6

and a discrete number of values g6

g6 = g(α6) = cos
(2α6 − 1)π

2N6

, α6 = 1, ..., N6, N6 ≤ N5

is chosen. Now, applying the inverse interpolation, we can calculate the corresponding
values of g5.

Let g5 be in the form

g5 =
∑

ijklm

CijklmTi(g1)Tj(g2)Tk(g3)Tl(g4)Tm(g6), (4)

i = 0, ..., N1 − 1; j = 0, ..., N2 − 1; k = 0, ..., N3 − 1; k = 0, ..., N4 − 1; m = 0, ..., N6 − 1.
The coefficients Cijklm are calculated using the formula:

Cijklm =

∑

α1α2α3α4α6

g5α1α2α3α4α6
Ti(g1)Tj(g2)Tk(g3)Tl(g4)Tm(g6)

(
∑

α1

Ti(g1))2(
∑

α2

Tj(g2))2(
∑

α3

Tk(g3))2(
∑

α4

Tl(g4))2(
∑

α6

Tm(g6))2
, (5)

α1 = 1, ..., N1; α2 = 1, ..., N2; α3 = 1, ..., N3; α4 = 1, ..., N4; α6 = 1, ..., N6.
The total number of “nodes” for which trajectories were calculated was 625: N1 =

N2 = N3 = N4 = 5. The trajectories were computed for each sample and for N5 = 7
momentum values in the range 1-10 GeV/c and the deflection angle was determined.
For each combination (α1, α2, α3, α4) the momentum variable was calculated by inverse
interpolation for N6 = 7 of deflection variables. Then, using (5), the expansion coefficients
Cijklm were calculated: total number is 5 x 5 x 5 x 5 x 7 = 4375. Lowering the upper
limits N1, N2, N3, N4, N6, we obtain, without changing the coefficients, a least-squares fit
to the computed trajectories. This is a consequence of the Tchebysheff polynomials being
orthogonal. The number and significant coefficients can be found by a Fisher test. Our
analysis has shown that without loss in accuracy, only 89 coefficients can be used. In
order to estimate the accuracy of the method on data close to real data, we used the
GEANT data. Fig. 7 presents the distribution of p− pc and Fig. 8 shows the distribution
of p−pc

p
for positively charged tracks. One can see from Fig. 4 that the dispersion of the

distribution p−pc

p
is 0.26%.

It must be noted that this result is obtained for positively charged particles, because
the tracing of the basic set of trajectories was realized for positively charged particles. For
a small part of tracks (≈ 10%), the parameters of which are out of the range of variables
x1, x2, x3, x4, x6, we used the approximation of the uniform magnetic field. This reduces
the overal resolution to about 0.34%.

In summary, the algorithm provides the possibility to reconstruct the momentum of
charged particles registered in the STS system with high accuracy. The accuracy can be
further improved by separate momentum reconstruction of particles of different charges
and by subdivision of the momentum range into subintervals.
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Fig. 7. Distribution of p − pc (in
MeV/c) for the GEANT data (for

positively charged particles)

Fig. 8. Distribution of p−pc

p
for the

GEANT data (for positively charged
particles)

4. Particle identification with the RICH detector
The Ring Imaging Cherenkov detector (RICH) is designed to provide electron identifica-
tion in the momentum range of electrons from low-mass vector-meson decays. A second
task of the RICH detector is the p identification for higher momenta in order to im-
prove the K/p separation which quickly deteriorates for p > 4 GeV/c if only time-of-flight
information is used. Particle identification with the RICH detector is performed by a
measurement of the Cherenkov angle/ring radius and the momentum of the particles (see
Fig. 10). Assuming that tracks with momentum are provided by the tracking system, the
RICH part for particle identification requires the following steps:

• ring finding,

• determination of center and radius of ring/ Cherenkov angle,

• matching of rings with tracks.

All charged tracks being reconstructed by the tracking system are reflected at the
mirror in order to give the center of a possible Cherenkov ring (see Fig. 9). The number
of these tracks is much larger than the number of particles really producing a ring. In
order to combine rings and tracks each ring is to be matched to the track having its
extrapolation closest to the calculated ring center.

Track extrapolation was obtained using CbmRichProjectionProducer class. Each
RICH event consists of about 400 track extrapolations and about 1500 hits, nearly 80
rings. So the key part of any ring-finder is a prior search for all ring containing fragments.
It was realized by the coarse histogramming of source data, then by clustering hits in all
separate areas of this histogram and by choosing not all, but only hits belonging to each
of those clusters.

Methods for CBM-RICH ring recognition were elaborated on the basis of the fast
search for the areas containing RICH hits and then either by using the information of
previously found tracks or, as a standalone program, for unguided ring finding.
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Fig.9. Simulated image of the CBM RICH
photodetector plane. Hits forming rings to be
recognized are marked by blue points. Track
prolongations to this plane are marked by
crosses

Fig.10. Ring radius distribution versus the
track momentum for e

± (1), µ
± (2) and

p
± (3)

4.1. Track based RICH-ring recognition algorithm
Each track extrapolation could be considered as a potential ring center. However, as
it can be seen from Fig. 9, the high multiplicity of CBM events, especially the great
number of secondary particles cause the track-ring matching problem. It is solved by
combining track and ring with closest distance. We calculate all distances between ring
center predicted by track and nearest hits. Each time we test these distances to be within
prescribed limits. Then we histogram those distances and look for a maximum. If the
sum of maximum bin and of two adjacen bins is exceeded a CUT, that means that we
found a ring. Natural criteria were aslo applied:

1. ∆r = difference of fitted radius and simulated radius < 0.5 cm;
2. ∆xy = difference of fitted ring center and simulated center < 0.5 cm;
3. min/max potential hits (compare MC hits and associated hits) in the range
0.5 - 1.5.
The total efficiency of track-guided ring finding shown in Figs. 11 and 12 is on the

satisfactory level.
Since we use the track extrapolation as a ring finding predictor, we have ring finding

and track-ring matching in one. But if we have two very close tracks, a mismatching
problem arises (see Fig. 13). Fortunately, as it is seen in Figs. 14 and 15, mismatching
errors are on the level less than 10%, although such a circle of problems needs to be better
studied.

The second approach to the unguided ring recognition leading to the so-called
standalone ring-finding is of importance for various problems of the RICH instrumen-
tal testing and of the RICH alingnment with other detectors of the CBM setup. There
were three independent methods proposed: Hough transform based, moving templates
and elastic networks approaches.

4.2. The Hough Transform approach was studied as an option for a standalone ring
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Fig.11. Ring-finding efficiency for electrons
as the function of Pt (GeV/c) (vertical axis)
and rapidity

Fig.12. Ring-finding efficiency for pions as
the function of Pt (GeV/c) (vertical axis) and
rapidity

Fig.13. Two tracks one ring Fig.14. Wrong matches: real
rings

Fig.15. Matching of fake rings

finder providing center and radius for each ring. It can as well be used to give an estimate
of center and radius of the rings which then can be used as input for fitting the ring . The
Hough transform framework is often applied to cope with low resolution search of rings.
The Hough transform is robust to a certain extent concerning topological gaps in rings
(semicircles at detector edges) and concerning a high noise background [13, 14]. It con-
verts points of the measurement space, i.e. hits, to points in the parameter space. In case
of circles in the RICH detector the coordinates of the parameter space are the ring centers
and their radii. Through three arbitrary signal points a unique circle can be drawn. The
resulting ring centers show a wide distribution in the parameter space and nearly fill the
full circle of real rings. This effect can easily be understood considering the fact, that
the ring center and the radius from the neighboring hits are only vaguely determined.
Unfortunately, heavy combinatorics inherented to any Hough transform implementation
results in its very high time consuming. Therefore, a procedure was developed reducing
the number of combinations. In the next step of the usual Hough transform strategy, ring
centers and radii are determined by the search for the most populated places in the pa-
rameter space. A simple method would consist of collecting all calculated centers (xc,yc)
in histograms of proper granularity and defining a cut-off value in the signal height to

89



select real ring centers. The radii corresponding to each center can then be found similarly.

4.3. Moving template (MT) approach to ring search
A template (a blue area in Fig. 16) was elaborated to cover only electron rings, r ≈ 5.5±0.5
cm, even elliptically and stochastically deformed. The ring is “caught” by matching its
left hits with the left edge of the template. The ring is recognized using its characteristic
features (qualitative and quantitative) by examination of a picture which hits form within
the template region. Found rings are marked out (by red in the picture). This approach
could be applicable to handle cases of “spoiled” rings due to spherical aberration or the
stray magnetic field.

Fig.16. Moving template example

4.4. Elastic Net for standalone RICH ring finding
Standalone finding of rings in RICH detector is based on the elastic neural net [16, 17].
The method does not require any prior track information and can be used for trigger-
ing. Application of the method to the RICH detector of the CBM experiment shows an
efficiency of 94.3% and high speed (5.4 ms per event with about 1400 hits in the RICH
detector). In view of its computational simplicity and high speed, the algorithm is con-
sidered to be further implemented in hardware which can increase the speed by another
few orders of magnitude.

4.5. The ring fitting
This algorithm was implemented as the program RFit which embodied the least squares
algorithm (LSF) for estimating parameters of Cherenkov rings over a set of scattered
points provided by the RICH detector. Since the conventional LSF is often failed for
highly contaminated data, it was evolved to the robust weighted LSF [12]. The RFit
program supports both algorithms for fitting a single ring and even two overlapped rings
simultaneously (see [15] for the algorithm description). It was carefully tested on the big
sample of simulated events and showed the satisfactory accuracy and efficiency.

5. Algorithms for STS and TRD tracking
These algorithms were developed as track following in space on the basis of the Kalman
filter taking into account both the nonlinear magnetic field and the multiple scattering.
The track following process is an originated downstream beam from the middle of the
target area, but then after finding several reference tracks with momentum over 5 GeV it
can estimate and use the approximate vertex position. The program was tested on the
GEANT simulated STS and TRD data, but needs its further tuning.
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