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1. Motivation. The analysis of dependence between variables is one of the main tasks
of technical and scientific research. The increasing use of the Internet and multimedia
technologies, the transmission, storage and study of the massive volumes of records need
new, high performance data compression, analysis and management tools. Methods of
approximations are used every day in data analysis and information gain process, and
the associated problems are of wide interest in theoretical and experimental sciences. One
of the main problems in data/signal denoising, compression and forecasting is to find
an optimal or good representation. Once it is achieved many things can be done about
drawing information from data.

Piecewise polynomial methods and splines have been widely used. Various approaches
and methods are proposed recently in this area. These include the segment approximation

problem (or the free knots problem in the spline theory) [7], [8], smoothing spline methods
and wavelet techniques [9], [10].

2. Problem Statement. The segment approximation problem is closely related to
the piecewise and spline approximation problems. Spline continuity conditions at the
breakpoints are dropped in the case of segment approximations. A search interval is divided
into subintervals and an approximation problem is solved over each of these subintervals. It
is clear that different subdivisions into subintervals lead to qualitatively different results.
The main goal is to find a subdivision where the errors over the subintervals are as small
as possible. The effectiveness of a spline representation of data depends critically on their

number and positions [7], [8] and [10]. Notice that free knots optimization is a very hard
non–linear problem.

3. Automatic knot detection using APCA. We suggested a new approach to
the analysis of complex dependence with relatively small noise using the four point
methodology [3]. The suggested algorithm LOCUSD [1] divides the interval/curve into
subintervals/segments of various lengths, provides for every segment local cubic estimations
and gives a technique for obtaining integral cubic approximants. Finding the breakpoints
in an auto-tracking mode and the iterative computation schemes are the two main features
of the proposed method that uses a special approximation model [1]. MS Visual C#
components for autotracking piecewise cubic approximation (APCA): a class library and
a Windows-application have been developed too [2].

In our method neither the number of knots nor their placement are unknown. This
is very important for applications in approximation and reduces real world data. The
knots of the subintervals are detected in auto–tracking mode using a digitized curve (data
points). A three–point cubic parametric model is used as a local approximant with three
control (three different points at x axis), three fixed (ordinates on the curve) and one
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free (1/6 of a third derivative of the model) parameters. A free parameter θ is found in a
line following mode, using either step–by–step averaging or the first order recursive least
squares method (RLSM). A formula for expression of the free parameter via a length of
the segment and values of a function and derivatives in the joining points is received. The
C1 — smoothness depends on the accuracy of the θ — estimate.

Let
{

P (xm, f̃m)
}

m= ¯1,N
, f̃m = f(xm) + em, xm < xm+1, 4 ¿ N ,

be a given set of data points, where em ∼ N(0, σ2). We consider tetrads
T = {Pα, Pβ, P0, Pm}, T ∈ {P}, Pi 6= Pj; i 6= j, i, j ∈ (α, β, 0,m). Three points R =
(Pα, Pβ, P0) ∈ T are called as reference points and Pm is a variable point. To approximate
a piece of a curve f (the segment) at interval [α, β] we use a parametric cubic model
(Fig. 1)

f ≈ S = Π + θQ, (1)

where Π is a quadratic parabola passing via reference points R and Q is a cubic parabola:
Q = τ(τ −α)(τ −β); θ is a free parameter. The ordinates of the reference points are used
as fixed parameters: r0 = [rα, rβ, r0]

T , where r∗ ≈ f∗ or r∗ ≡ f∗ if e∗ = 0. Parameters
a = (α, β, x0) and τm are defined as α = xα − x0, β = xβ − x0 and τm = xm − x0. These
parameters are used to evaluate weight homographic functions d0 = [d1, d2, d3]

T and Q.
Fig. 1 shows a cubic arc S approximating a piece of a curve f on the subinterval [α, β].
To obtain {di}

3

i=1
we use a single–purpose cross–ratio functions [3]. In these terms the

parabola equation for the nth segment is written as Π(τ ; an, r0n) = (r0n,dn). θ is the
free parameter which is related to a third derivative of the model: θ = S ′′′/6. Eq. (1)
and weight functions construction yield some advantages in development of algorithms:
flexibility, control, stability, simple computations and so on.

The stability of the method w.r.t. input errors is shown as well. The factors of error
suppression (Kn and dinKn) are shown in Fig. 2. The key parameters of the approximation
are: the parameters of the weight functions, the variance of the input errors, and a sampling

step.

Fig. 1: The cubic model Fig. 2: log 10Kn and
log 10 | dmKn |

Fig. 3: The choice of tetrads

The constancy of the third derivative of the cubic model (S ′′′ = const) is used as a
criterion for knot detection in the dynamic mode. This value can be estimated via a local
θ̂ using four points on the curve and Eq. 1. A choice of tetrads at every segment uses two
fixed points (Pα, P0) and two variable points (Pm, Pm+1≡βn

) (Fig. 3). To get the global
estimate θ̂ at the whole segment we use a recurrent formula using the first-order recursive
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least–squares method (RLSM):

θ̂n = θ̂n−1 + Kn

(

f̃m − Πnm − θ̂n−1Qnm

)

, θ̂0 = 0,m ∈ {1, ..., N}, n = 1, 2, ..., n∗, (2)

where Kn = Qnm/
∑n

j=1
Q2

j (see Fig. 2). The number n∗, is defined as n∗ = n under

condition | δm |> δ, where δm = fm − Π(τm; an, r0n) − θ̂nQ(τm, α, βn) and δ is the given
control parameter. The efficiency of the method is shown by numerical calculations on
test examples (see Figs. 5 — 9) and real measurements.

To perform this analysis and construct data approximants a Windows–application
was built based on class components (Fig. 4). We introduced in the .NET framework
within a name space LinAlg [5] special vector and matrix types with a wide range of
object and static numerical, statistical, database and visualization methods, properties
and components that enable to perform in Windows and Web environment not only
exploratory data analysis, but also our approximation and compression techniques, and
that are extensible and manageable. LinAlg is a set of types that enables vectorial
programming and incorporates a wide range of numerical, statistical and graphical methods.

Fig. 4: The Windows application GUI

The three main objects in APCA are the data points, segments and the interval/set
of all segments. Based on them we designed an object–oriented implementation of APCA
in MS Visual C# [11] with three classes/components: Point4, Segment, SegmentsAll. Due
to this architecture one can easily access a given segment and gain information about
it. This feature may play a key role in the componentЎs extension connected with the
generalization and improvement of APCA in the future. Although due to LinAlg one can
easily view, plot or save the results and diagnostics of APCA, to simplify these tasks we
created a forth class FormShowPlotSave.

4. Examples. Figure 5 shows the result of knot detection and piecewise–cubic approximation
for 134 points situated on the test curve f = 25/(x2 + 25)− 0.55Sin(x + 2)/(x + 2) using
LOCUSD.
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Fig. 5: Knot detection and cubic approximants for the test curve

The data of the following example were gained by numerical modeling of the electron
thermal capacity (ETC) for D–acetone molecule and so they are practically without errors
[6]. Fig. 6 display the data and their APCA approximants, fig. 7 the estimations of
the derivations and fig. 8 the residuals. The quality of the automatically detected 25
approximants (δ = 0.005) is satisfactory. The subintervals are shorter in the left part of
the figures, where the graph is more dynamic.

Fig. 6: ETC and its approximations [6]

Fig. 7: First and second derivations Fig. 8: Local and interval residuals
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Fig. 9: Knot detection and cubic approximation for data with small noise

5. Conclusion. Let us summing up the results:

• an automatic knot detection and a piecewise–cubic approximation method are proposed;

• algorithm LOCUSD, MS.NET components and Windows–application APCA for segment
approximation are developed;

• the continuity of the first derivatives of the approximants for functions presented by
data without errors are acceptable;

• a smaller δ results in more segments with more precise approximants;

• for noisy data it is advisable to choose a greater sampling step and δ;

• the goal is to find such δ that yields desirable approximation quality and an acceptable
count of segments.

Our plan is to develop methods, algorithms and tools for smoothing data point with
a low signal to noise ratio.
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