Моделирование критических кривых в джозефсоновских контактах переменной ширины

Т.Л. Бояджиев 1 , Е.Г. Семерджиева 2

Лаборатория информационных технологий, ОИЯИ

Ю.М. Шукринов³

Лаборатория теоретической физики им. Н.Н.Боголюбова, ОИЯИ

В работах [1, 2] исследовались структура и устойчивость статических вихрей магнитного потока и соответствующих им критических кривых в длинных джозефсоновских контактах (ДК) с экспоненциально изменяющейся шириной. При использовании в качестве высокочастотных генераторов такие контакты имеют некоторые существенные преимущества [3, 4].

В зависимости от геометрии контакта (способа инжекции внешнего тока γ) краевые задачи для статических распределений магнитного потока $\varphi(x)$, в таком ДК имеют следующий вид:

 $\sqrt{}$ в случае in-line геометрии

$$-\varphi'' + \sigma\varphi' + \sin\varphi - \sigma h_B = 0, \qquad (1a)$$

$$\varphi'(0) - h_B + l\gamma = 0, \tag{1b}$$

$$\varphi'(l) - h_B = 0, \tag{1c}$$

 $\sqrt{\ }$ в случае overlap геометрии

$$-\varphi'' + \sigma\varphi' + \sin\varphi - \sigma h_B + \gamma = 0, \qquad (2a)$$

$$\varphi'(0) - h_B = 0, \tag{2b}$$

$$\varphi'(l) - h_B = 0, (2c)$$

Все величины записаны в безразмерном виде. Величина l есть длина контакта, постоянная σ представляет собой параметр формы, через h_B обозначено магнитное поле на концах контакта.

Решения задач (1) и (2) зависят не только от пространственной координаты x, но и от вектора параметров $p \equiv \{l, \sigma, h_B, \gamma\}$, т.е. $\varphi(x, p)$. Для изучения устойчивости некоторого статического решения $\varphi(x)$ при малых пространственно-временных возмущениях применяется [6] задача Штурма-Лиувилля (ЗШтЛ)

$$-\psi'' + \sigma\psi' + q(x)\psi = \lambda\psi, \qquad (3a)$$

$$\psi'(0) = 0, \quad \psi'(l) = 0,$$
 (3b)

$$\int_{0}^{l} \psi^{2}(x) \, dx = 1 \,, \tag{3c}$$

потенциал которой $q(x) \equiv \cos \varphi(x)$. Здесь λ — спектральный параметр.

¹E-mail: todorlb@jinr.ru ²E-mail: elis@jinr.ru

³E-mail: shukrinv@thsun1.jinr.ru

Если в некоторой области $\mathcal{P} \in \mathbb{R}^4$ изменения параметров минимальное собственное значение задачи (3) удовлетворяет неравенству $\lambda_{min}(p) > 0$, то решение $\varphi(x,p)$ устойчиво [5]. Значения $\lambda_{min}(p) < 0$ соответствуют неустойчивым решениям. Точки вектора параметров, лежащие на гиперповерхности

$$\lambda_{min}(p) = 0 \tag{4}$$

в пространстве \mathcal{P} , являются точками бифуркации (ветвления) для решения $\varphi(x,p)$. Значения параметров, для которых имеет место равенство (4), называются бифуркационными или критическими для решения $\varphi(x)$. Сечения поверхности (4) гиперплоскостями в \mathcal{P} , соответствующими фиксированным значениям двух параметров, определяют бифуркационные кривые для остальных двух параметров. Наиболее важными, с точки зрения возможности экспериментальной проверки, представляются критические кривые вида "ток — магнитное поле"

$$\lambda_{min}(\gamma, h_B) = 0, (5)$$

отвечающие заданным геометрическим параметрам l и σ контакта.

С математической точки зрения для уравнений (1) – (3c) возможно ставить две разные задачи. Пусть $\varphi(x)$ есть решение краевой задачи (1) или (2), соответствующее фиксированной совокупности параметров p. Допустим, что $\lambda_{min}(p) > 0$. Чтобы получить точку критической кривой нужно варьировать поле h_B при заданном токе γ (или варьировать ток при заданном магнитном поле), до тех пор пока условие (5) не будет удовлетворено с заданной точностью.

Чтобы вычислять непосредственно бифуркационные точки, нужно решать систему уравнений (1) (или (2)) и (3) для заданного $\lambda_{min} \simeq 0$ как нелинейную задачу на собственные значения относительно пары $\{\varphi(x), \psi(x)\}$ и одного из параметров p [6].

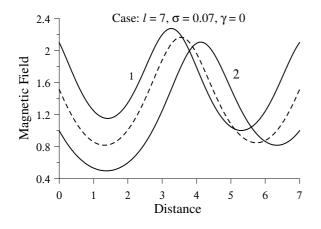
На Рис. 1-5 представлены основные результаты численных экспериментов, приведенных в работах [1, 2].

Рис. 1 иллюстрирует влияние внешнего магнитного поля h_B на распределение магнитного поля $\varphi'(x)$ для основного флюксона Φ^1 в контакте длиной l=7 при $\sigma=0.07$ и $\gamma=0$. При некотором значении $h_B=h_1$ максимум магнитного поля локализуется в середине контакта (пунктирная кривая, $h_1\approx 1.515$). При этом число квантов магнитного потока [6] (число флюксонов)

$$N_f[\varphi] \equiv \frac{1}{\pi l} \int_0^l \varphi(x) \, dx = 1.$$

Для значений $h_B < h_1$ имеет место [4] эффект "выталкивания" $(N_f < 1)$ флюксона к торцу x = l (кривая, отмеченная цифрой 2, $h_B = 1$). Если $h_B > h_1$, флюксон сдвигается внешним полем к торцу x = 0 (кривая 1, $h_B = 2.1$). При этом число флюксонов $N_f > 1$.

На Рис. 2 демонстрируются полученные численным путем зависимости $\lambda_{min}(h_B)$ для мейсснеровского распределения и нескольких первых устойчивых и неустойчивых вихрей в ДК длиной l=7 при токе $\gamma=0$ и $\sigma=0.07$. Сплошные кривые соответствуют устойчивым решениям ($\lambda_{min}>0$), а пунктирные — неустойчивым ($\lambda_{min}<0$). Каждая кривая, соответствующая устойчивому распределению магнитного потока, имеет два нуля, расстояние между которыми определяет область устойчивости вихря



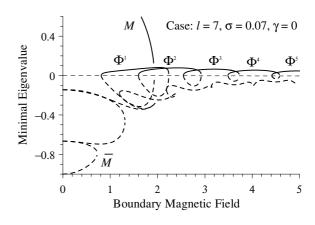
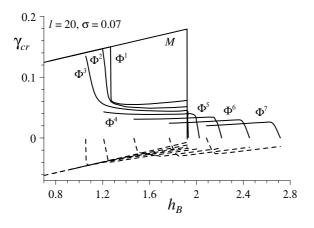


Рис. 1: Влияние параметра h_B на Φ^1

Рис. 2: Зависимость $\lambda_{min}(h_B)$ при $\sigma=0.07$

при изменении магнитного поля h_B . Сами нули являются критическими значениями поля h_B при нулевом токе γ .

Критическая кривая (5) контакта (конкретные примеры приведены на Рис. 3 — 6) строится как огибающая критических кривых, соответствующих различным распределениям магнитного потока в контакте. Другими словами, критическая кривая состоит из кусков критических кривых для отдельных состояний с наибольшим по модулю при заданном h_B критическим током.



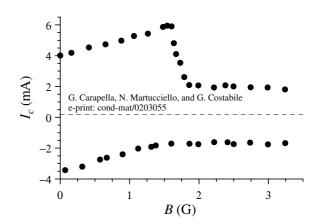


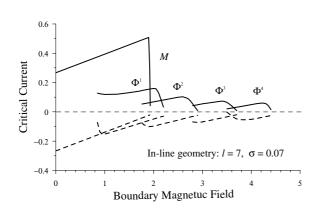
Рис. 3: Кривая $\gamma_c r(h_B), \ l=20.$

Рис. 4: Экспериментальные результаты [4]

Пусть, например, $h_B=1.4$ (см. Рис. 3). При токе $\gamma=0$ в контакте существуют пять различных распределений магнитного поля. При увеличении тока γ в сторону положительных значений вихри теряют устойчивость в порядке $\Phi^4\to\Phi^3\to\Phi^2\to\Phi^1\to M$. Последним "срывается" мейсснеровское распределение, критический ток которого $\gamma_c(M)\approx 0.156$ и есть критический ток контакта при заданном значении внешнего поля. Следовательно, резистивный режим в контакте при $h_B=1.4$ имеет место для $\gamma>0.156$.

Если увеличивать ток γ от нуля в сторону отрицательных значений, то срыв распределений происходит в обратном порядке $M \to \Phi^1 \to \Phi^2 \to \Phi^3 \to \Phi^4$, и критическим для контакта будет критический ток $\gamma_c(\Phi^4) \approx -0.039$ вихря Φ^4 .

Отметим, что построенная нами численно критическая кривая ДК, представленная на Рис. 3, имеет хорошее совпадение с экспериментальными результатами (Рис. 4), приведенными в [4] (см. также Рис. 7(а) в указанной работе).



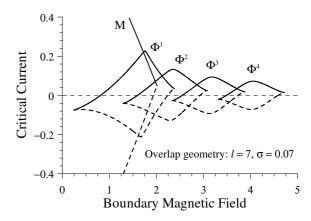


Рис. 5: Критическая кривая контакта в случае in-line геометрии

Puc. 6: Критическая кривая контакта в случае overlap геометрии

С целью сравнения на Рис. 5 и Рис. 6 приведены критические кривые, соответствующие решениям краевых задач (1) и (2). Отчетливо заметна асимметрия, обусловленная различным способам инжекции внешнего тока в ДК.

Список литературы

- [1] Е.Г. Семерджиева, Т.Л. Бояджиев, Ю.М. Шукринов, Статические вихри в длинных джозефсоновских контактах с экспоненциально изменяющейся шириной, Физика низких температур, 2004, т. 30, №6, pp. 610-618.
- [2] Yu.M. Shukrinov, E.G. Semerdjieva, and T.L. Boyadjiev, Vortex structures in exponentially shaped Josephson junctions (Accepted in *J. of Low Temp. Phys*).
- [3] A. Benabdallah, J.G. Caputo, and A.C. Scott, Exponentially trapped Josephson flux-flow oscillator, *Phys. Rev.* B 54, No 2, 1996, pp. 16139–16146.
- [4] G. Carapella, N. Martucciello, and G. Costabile, Experimental investigation of flux motion in exponentially shaped Josephson junctions, *Phys. Rev.* B **66**, 134531 (2002).
- [5] Ю.С. Гальперн, А.Т. Филиппов. Связанные состояния солитонов в неоднородных джозефсоновских переходах, $\mathcal{K} \mathcal{T} \Phi$, т. **86**, вып. 4 (1984), с. 1527; Sov. Phys. JETP, **59** (1984), р. 894.
- [6] Т.Л. Бояджиев, Численное исследование критических режимов в нелинейных полевых моделях физики, Дисс. на соиск. уч. степени д.ф.м.н., Дубна, 2002.