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1. A priori Bayesian inference in numerical quadrature. The standard approach
to the solution of one-dimensional Riemann integrals

I ≡ Iab[f ] =

∫ b

a

f(x)w(x)dx , −∞ < a < b < ∞, (1)

within prescribed accuracy by automatic adaptive quadrature [1, 2], resulted in the imple-
mentation of computer codes (see, e.g., [1, 2, 3]) the reliability of which is heavily based
on the user’s ability to choose the suitable code from a menu of proposed automatic codes.
While this approach constituted a big leap forward in numerical quadrature, the evidence
shows that it may badly fail if a trial and error approach is needed due to the impossibility
to know in advance the detailed behaviour of the integrand function (see, e.g., [4]).

Within the standard adaptive quadrature, the automatic decisions use as basic infor-
mation the output pair {q, e} of the local quadrature rule currently activated for solving
Iαβ[f ] over a subrange [α, β] ⊆ [a, b]. The automatic decisions will be correct under
reliable {q, e} pairs. However, spurious decisions with fatal outputs are possible under
sequentially repeated occurrences of unreliable {q, e} pairs.

Tools for the assessment of the {q, e} pair reliability over the current integration range
[α, β] have been proposed a few years ago [5, 6]. Essentially, they performed an a posteriori

check of the well-conditioning of the profile of the integrand function f(x), defined as
the set of its values at the quadrature knots inside (α, β) together with the endpoint
ones, f(α) and f(β). At the ICCAM 2004 Conference we first proposed [7] the idea of
conditional activation of the local quadrature rules. This had to be obtained by means of
a set of hierarchically ordered a priori validation criteria providing Bayesian inference [8]
on the well-conditioning of gradually generated integrand profile subsets at newly added
quadrature knots.

The root of the Bayesian inference decision tree allowing ignition of the integrand

adapted activation of a local quadrature rule for solving (1) concerns the diagnostic of the

behaviour of f(x) at the boundaries a and b of the integration domain [a, b]. The solution
of this step of the Bayesian inference falls completely outside the standard pattern of the
automatic adaptive quadrature. Its derivation from a suitable integrand sampling inside
a mesoscopic neighbourhood of the boundary layer of [a, b] is discussed in the following.
2. Mesoscopic analysis of the boundary layer. Assume that f(x) is a continuous
twice differentiable function over [a, b] and let xr ∈ [a, b] denote a reference argument
value. Then there exists a nonvanishing neighbourhood V (xr) ⊆ [a, b] of xr inside which
a linear Taylor series expansion holds true within a predefined threshold 0 < ε ¿ 1.

Numerical check of the continuity of f(x) is done from a sampling of its computed

values, {fi = fl(f(xi))|i = 0, 1, · · · ,m}, over a set of machine number arguments Sm(xr)=
{xi∈V (xr)|i=0, 1, · · · ,m}, m≥3, chosen such that fl(xr) ∈ Sm(xr), where fl(ζ) denotes
the floating point representation of ζ ∈ R . Let {f(xi))|i = 0, 1, · · · ,m} denote the set of
actual values of f(xi) over Sm(xr). In general, due to the round-off, f(xi)−fl(f(xi)) 6= 0,
hence the best information on the smoothness properties of f(x) at xr following from the
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Figure 1: (a) Error measures of the first order derivative approximation (3) of f(x) = xn, at b = 0.99
inside [a, b] = [0.01, 0.99], in terms of the exponent values n. (b) Comparison of the affine and conventional
error measures for the data on Fig. (a). (c) Same as (b) for f(x) = xn + 1. (d) Same as (a) for
f(x) = 1/(1 + x2), at b end inside [0, b] for variable b. Within plot resolution, the affine, conventional
and absolute error measures (lower graph) coincide with each other

set {xi, fi} is obtained from the scrutiny of the properties of a second degree polynomial
least squares fit to the floating point data.

It is convenient to perform the scale transformation xi = x0 + ξihr, i = 0, 1, · · · ,m,
ξi ∈ Z, where hr denotes the distance from xr to its nearest machine number inside [a, b].
This leads to the second degree fitting polynomial

y2(xi) = α0 + α1hrp1(ξi) + α2h
2

rp2(ξi) , (2)

spanned by the orthogonal basis polynomials pk(ξi), k = 0, 1, 2, of norms Nk respectively.
Under negligible α2, the first order derivative of f(x) at xr is given by

f ′(xr) ≈ y′

2
(xr) = α1 = N−1

1

m∑
i=0

p1(ξi)fi. (3)

The smallest sampling Sm(xr) suitable for a least squares analysis providing insight
on the smoothness properties of f(x) at xr = a and xr = b respectively consists of four
distinct abscissas (i.e., m = 3). We chose them such that the set {x0, x1, x2} defines a
uniform mesoscopic mesh ξ0 = 0, ξ1 = p, ξ2 = 2p, ξ3 = q, q 6= {0, p, 2p}.

Then the validity of a linear Taylor expansion around the reference abscissa xr is
found to hold true within prescribed accuracy ε provided the minimal sampling yields
scale invariant approximations of the first order derivative f ′(x).
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3. Implementation of the analysis criteria. The extension of the analysis mesh
S3(xr) is subject to two contradictory requirements. If f(x) is a smooth slowly varying

function, then it is desirable to have an as large as possible mesoscopic sampling. Other-
wise, it is desirable to have an as narrow as possible mesoscopic sampling. To conciliate
these two requirements, we start with a trial value 1 ¿ p ¿ ε−1

0
(where ε0 is the largest

relative spacing between adjacent machine numbers) and compute f0 and f2. Under a
large deviation of f2 from f0, the sampling abscissas x1 and x3 are chosen inside (x0, x2),
while under a small deviation of f2 from f0, a value q À p is used.

The analysis of the boundary layer yields, at each domain integration end:

(1) The diagnostic concerning the behaviour of the analyzed function: irregular be-
haviour inside the analysis neighbourhood; smooth function; inward monotonically
decreasing function, pointing to the probable occurrence of a singularity in f(x) or
f ′(x), either at the analyzed domain end or at a nearby outer point, resulting in
slow convergence; inward monotonically increasing function, pointing to the proba-
ble occurrence of an inner singularity in f(x) or f ′(x), resulting in slow convergence.

(2) Under smooth function diagnostic, the estimate (3) of f ′(xr) is returned.

(3) The number of function evaluations needed to infer the diagnostic associated to a
boundary layer (that is, at both ends a and b of the analyzed interval) provides a
measure to the efficiency of the proposed procedure.

The possibility of doing a reliable and portable analysis follows from the conformity
of both the hardware (RAM, cache, processor) and the software (operating system and
compiler) with the IEEE 754 standard [9] which governs binary floating point arithmetic.

While checking software conformity with the IEEE 754 standard, we identified and
solved three points where the results of the straightforward implementation of the analysis
were falsified: deviation of the length of the significand from the standard; floating point

comparison operation deviations from the standard; unpredictable effects following from
compiler code optimization.

We finally mention that the accuracy of the approximation of f ′(xr) by y′

2
(xr) was

measured using both the conventional approach (which takes the minimum of the absolute
and relative errors) and the unified affine measure proposed in [10].
4. Numerical results. The above analysis has been tested on several classes of para-
metric functions simulating various possible behaviours inside the boundary layer. The
main conclusions of the analysis can be summarized as follows:

(i) Robustness of the procedure: Correct outputs have been obtained for function ranges
going from the underflow threshold to the overflow threshold.

(ii) Reliability of the procedure: For all the investigated families of functions and all the
considered sets of the parameters, the procedure resulted in truthful inferences.

(iii) Output precision of first order derivative estimates: For all the families of smooth
functions, Eq. (3) yielded at least five exact significant decimal figures.

(iv) Efficiency of the procedure: The number of function evaluations needed for diagnos-
tic inference varied from the minimal value of four to five.

Figures 1 and 2 summarize the most interesting results concerning the efficiency of
derivative approximation by Eq. (3) in the case of continuous functions.
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Figure 2: (a) Error measures associated to Eq. (3) for f(x) = epx, at a = 0 inside [a, b] = [0, 1] for
variable p. The affine error deviates from the conventional and relative errors at low p. (b) Same as (a),
at b = 1 end. The affine, conventional and relative errors are identical within plot resolution. (c) Same
as (b), at b = 1 end for f(x) = ep(x+1). All mentioned errors are identical within plot resolution. (d)
Same as (c), at a = 0 end for f(x) = ep(x−1). The precision is controlled by the absolute error, while the
relative one mostly remains in the range 10−8 ÷ 10−7
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