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Solvent environment plays a crucial role on the structure and function of biological
macromolecules, such as DNA, RNA and proteins. Exact determination of direct inter-
actions between the macromolecules and the solvent molecules still remains a very hard
mathematical and computational problem. For this reason different kinds of approxima-
tions are usually done which allow description of these extremely complicated interactions
through physically averaged macroscopic parameters. Such effective parameters include,
for example, solvent accessible area of the solute molecule (in the calculation of thermo-
dynamic properties and three-dimensional structure of macromolecules) and the so called
excluded volume (see Figure 1). Computation of these parameters requires evaluation of
complicated algorithms. For this reason, any effort to development an effective analytical
methods is always welcome.

Figure 1: A molecular surface

Lee and Richards [4], and Chothia [5], introduced a solvent-accessible surface. The
accessible surface is traced out by the probe sphere center as it rolls over the protein. It is
a kind of expanded van der Waals surface. The molecular surface was first computed by
Greer and Bush [8], Richmond [10] has defined the solvent-excluded volume to mean the
volume contained within the solvent accessible surface, i.e. the volume which is inacces-
sible to the centers of solvent particles. That is the union of the expanded atom spheres.
The excluded volume is an important quantity in the theory of gases and liquids [9]. The
exploration of molecular volume and surface is essential for the understanding of drug ac-
tion since short range dispersion forces play a major role in the binding of drug molecules
to receptors (http://server.ccl.net/cca/documents/molecular-modeling).

The problem of the computation of volume and the surface area of the union of overlap-
ping spheres has been the subject of methods both numerical (Rowlinson [3]; Pavani and
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Figure 2: Stereographic projection of the spherical surface points onto the tangential
plane

Ranghino [11]; Gavezzotti [12]) and analytic (Richmond [10]; Kang, Nemethy, and Scher-
aga [13]; Gibson and Scheraga [14, 15, 16]; Guerrero-Ruiz, Ocadiz-Ramirez, and Garduno-
Juarez [17]; Petitjean [18]). More information can be found at www.netsci.org/Science/
Compchem/feature14.html, where an excellent overview, written by author of [6, 7]
M. L. Conolly, is presented. The E. Silla’s, at al. package GEPOL [20, 19] for com-
puting the molecular area and volume is referred there. At http://www.biohedron.com
one can find the M. L. Conolly’s molecular surface package presentation.

In [1] a new analytical method for computing solvent-accessible surface area of macro-
molecules and its gradients is presented. New approach, based on the stereographic pro-
jection (see Figure 1) by which the surface integrals are transformed to a sum of double
integrals which are reduced to the curve integrals. This approach was further extended
for the calculation of excluded volume, too. In [2] a Fortran package based on the new
exact analytical methods for computing volume and surface area of overlapping spheres
is presented. MPI Fortran version is described as well there. The package is also useful
for computing the order parameter of continuum percolation models.

Analytical methods for computing the excluded volume and the accessible

surface area of a macromolecula

We describe the molecule M as a union of n spheres (atoms) S1, . . . , Sn, i.e. M =
n
⋃

j=1

Sj. Let (xi, yi, zi) be Cartesian coordinates of the center of the i-th sphere and ri be its

radius, where 1 ≤ i ≤ n. For j 6= i we say that Sj is a neighbor of Si if In (Si)∩In (Sj) 6= ∅,
where In (S) denotes the interior of the set S.
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Stereographic projection

The points (x, y, z) on the surface of i-th sphere satisfy the equation

(x − xi)
2 + (y − yi)

2 + (z − zi)
2 = r 2

i . (1)

One can easily calculate from Fig. 2 that the point (xi, yi, zi) on the ith sphere is projetcted
from the top point (NP-North Pole) of the sphere onto the point (t, s) ∈ R

2 through the
following equations

t = −
2ri(x − xi)

z − zi − ri

s = −
2ri(y − yi)

z − zi − ri

(2)

This is one-to-one transformation except the top point (xi, yi, zi + ri) itself. It follows
from Eqs. (1) and (2) that the inverse transformation can be written as

x = xi +
4r2

i t

t2 + s2 + 4r2
i

y = yi +
4r2

i s

t2 + s2 + 4r2
i

z = zi + ri −
8r3

i

t2 + s2 + 4r2
i

(3)

The volume evaluation

Using Gauss-Ostrogradsky’s theorem one can reduce the volume V (M) evaluation to
the surface integrals of the second kind

V (M) =

∫∫∫

V (M)

dx dy dz =

∫∫

B(M)

z dx dy =
n

∑

i=1

∫∫

Bi(M)

z dx dy, (4)

where B(M) is the boundary (surface) of M and Bi(M) is a part of the surface of Si

which is outside of all its neighbors (“free” surface of the sphere Si).
Next step is the transformation of the surface integral over the particular surface

Bi(M) into the double integral. This can be done by projecting the surface Bi(M) from
some top point of the sphere (North Pole) into the domain Ωi in the plane tangent to the
sphere at the diametrically opposite point (the South Pole of Si) [1], see Figures 3 and 4.

For bounded Ωi we arrive to

Ii =

∫∫

Bi(M)

z dx dy =
128r7

i

3

∮

B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )

3
+

2r3
i

3

∮

B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )
−

8r4
i (3zi + 2ri)

3

∮

B(Ωi)

t ds − s dt

(t2 + s2 + 4r2
i )

2
,

(5)
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Figure 3: The bounded image Ωi of the sur-
face part Bi(M)
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Figure 4: Unbounded domain Ωi

where B(Ωi) is the boundary of Ωi, which consists of the circular arcs (see Fig. 3). All
line integrals along the circular arcs can be calculated exact.

Both, bounded and unbounded cases are represented by the formula

V =
n

∑

i=1

[χV (Ωi) + Ii] , (6)

where Ii is defined above by Eq. (5), and

χV (Ωi) =











0, Ωi is bounded,
4

3
πr3

i , Ωi is all plane except

the union of several disks,

Remark. If Ωi is unbounded, the corresponding sum of integrals Ii will be negative
and we get a correct value for the integral along B(Ωi) given by Eq. (5).

The surface area evaluation

For the area A(M) we have

A(M) =

∫∫

B(M)

|dσ| =
n

∑

i=1

∫∫

Bi(M)

|dσ|. (7)

Like in Eq. (5) if we denote

Ji =

∮

B(Ωi)

t ds − s dt

t2 + s2 + 4r2
i

, (8)

then the general formula for surface area is similar to the formula (6) for the volume

A =
n

∑

i=1

[

χA(Ωi) + 2r2
i Ji

]

, (9)
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Figure 5: The molecule without (left) and with (right) a cavity

where Ji is defined above by Eq. (8), and

χA(Ωi) =







0, Ωi is bounded,
4πr2

i , Ωi is all plane except
the union of several disks.

Remark. The integrals in formula (9) are calculated in the volume computation. So
we can use about the same computing time to get both the volume and the area values.

The existence of cavities (see Figure 5) should be taken into account by solving different
problems connected to the molecular properties. A special triangulation which includes
inside possible cavities points and the algorithm of the construction of such triangulation
are developed by the research team. This triangulation may be used for making a decision
about the point location and for calculation of the solvent accessible surface area and
inaccessible volume of a molecule in the case of possible molecular cavities existence.

This work was supported in part by the Russin Foundation for Basic Research (N
04-01-00490, N 05-01-00645).
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