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Introduction

The most basic features of a neutron star (NS)

are its radius and mass which so far have not been

well determined simultaneously for a single object.

In some cases masses are precisely measured like in

the case of binary systems but radii are quite uncer-

tain. In the other hand, for isolated neutron stars

some radius and mass measurements exist but lack

the necessary precision to inquire into their inte-

riors. In fact, it has been conjectured that there

exist a unique relation between the mass and radius

relation for all neutron stars and their equation of

state (EoS), that determines their internal compo-

sition [8]. For this reason, accurate observations of

masses and radii are crucial to study cold dense nu-

clear matter expected to exist in neutron stars.

However, the present observable data allows to

make probabilistic estimation of the internal struc-

ture of the star. In this report preliminary proba-

bilistic estimation of the superdense stellar matter

equation of state using Bayesian Analysis and mod-

eling of relativistic configurations of neutron stars is

shown. This analysis is important for research of ex-

istence the quark-gluon plasma in massive (around

2 sun masses) neutron stars.

NS structure

The microscopical properties of compact stars

are modeled in the framework of general relativity,

where the Einstein equations are solved for a static

(non-rotating), spherical star resulting into the so

called Tolman–Oppenheimer–Volkoff (TOV) equa-

tion equations [6]:
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as well as the equation for the baryon mass of the

star:
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with constants defined as:
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These equations are integrated from the center

of the star towards its surface, with the radius of

the star R defined by the condition p(r) = 0 while

the gravitational mass by M = m(R). In a similar

manner, the baryon mass is given by MB = mB(R).

To complement the solution to the TOV equa-

tions the EoS is required. It is given by the relation

p = p(ε) which carries information about the micro-

scopic ingredients of the dense nuclear matter, as

mentioned before. Thus, the above equations have

to be solved simultaneously using the equation of

state under the following boundary conditions at

the star centre (r = 0):

{

p(r ' 0) ' p(0) = p(εc)

m(r) '
C1

3
εcr

3
(4)

where εc is the energy density at the centre of the

neutron star, taken as an input. In this way, for a

given value of εc the solution of the TOV equations

are the p(r) and m(r) profiles and with them the

parametric relation M(R) as a function of εc can be

obtained.

The chosen EoS

For this study we follow the AHP scheme [2] for

the Equation of State (EoS):

p(ε) = pI
(ε)Θ(εc − ε) + c2

QM εΘ(ε − εc − ∆ε), (5)

where pI is given by a pure hadronic EoS and

pII represents the high density nuclear matter in-

troduced here as quark matter with c2
QM as its

squared speed of sound, as parametrized by Haensel

et al. [9] which describes pretty well the supercon-

ducting NJL model derived in [4]. For the hadronic

EoS we take the well known model of APR [1] that
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is in agreement with experimental data of densities

about nuclear saturation. For this hadronic branch

(I) all the relevant thermodynamical variables, en-

ergy density ε, pressure p, baryon density n and

chemical potential µ are well defined and taken as

input for determination of the hybrid (hadronic +

quark matter) EoS. As a starting point in derivation

of the high density EoS we introduce the pressure

as function of energy density in the quark matter

side:

pII
(ε) = c2

QM ε − B(1 + c2
QM ), (6)

with B(1 + c2
QM ) playing the role of a bag con-

stant. To determine the remaining thermodynami-

cal quantities nII and µII of the quark matter side

we use the following relations:

n =

∫ ε

ε̄

ε′

ε′ + p(ε′)
(7)

µ =
ε + p

n
(8)

where ε̄ is the quark matter energy density right

after the phase transition following the jump ∆ε

as density increases. Therefore one arrives at the

following formula

nII
(ε) =

pc + ε̄

pc + εc
nc

(

ε − B

ε̄ − B

)
1

1+c2

QM

, (9)

obtained by enforcing conditions of equal pressure

and chemical potential at the transition (Gibbs con-

ditions):

µc =
pc + ε̄c

n̄
=

pc + εc

nc
. (10)

The free parametes of the model are the transi-

tion density εc, the energy density jump ∆ε ≡ γεc

and c2
QM , the quark matter speed of sound squared.

The resulting EoS in the plane pressure versus den-

sity is depicted in figure 1 for a given set of input

parameters.

BA Formulation and Formalization

We define the vector of free parameters
−→π

(

ε, γ, c2
s

)

, where ε is the critical value of energy

density at phase transition (PhT), γ = ε/εc is a ra-

tio of the energy jump on PhT to the critical one,

and c2
s is square of speed of sound in quark matter.

These parameters are define the equation of state

with phase transition from nuclear to quark matter.

The nuclear equation of state can be taken APR [1].

These parameters were sampled:

πi = −→π
(

εk, γl, c
2
sm

)

, (11)

where i = 0 . . . N − 1 (here N = N1 × N2 × N3) as

i = N1×N2×k+N2×l+m and k = 0 . . . N1−1, l =
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Figure 1: Hybrid EoS scheme for two different sets

of parameters
(

ε, γ, c2
s

)

.

0 . . . N2 − 1, m = 0 . . . N3 − 1, here N1, N2 and N3

number of parameters εk, γl and c2
sm respectively.

Using equation of state (EoS) one can calculate

the neutron star construction by solving TOV equa-

tions. Then it is possible to use different neutron

star observations to check possibility of EoS. We

use three constraints: mass constraint [3], radius

constraint [5] and constraint of ratio between grav-

itational mass and baryon mass [7].

The goal is to find the set of most probable πi

basing on given constraints using Bayesian Analysis

(BA). For initializing BA we propose that a priori

each vector of parameter πi has probability equal

one: P (πi) = 1 for ∀i.

Mass Constraint

We propose that error of measurement is nor-

mal distributed N (µA, σ2
A), where µA = 2.01 M

¯

and σA = 0.04 M
¯

, it is measurements of massive

PSR J0348+0432 [3]. Using this assumption we can

calculate conditional probability of event EA that

mass of neutron star corresponds to measurement:

P (EA |πi ) = Φ(Mi, µA, σA), (12)

where Mi - maximal mass constructed by πi and

Φ(x, µ, σ) is the cumulative distribution function for

the normal distribution:

Radius Constraint

Radius measurement gives µB = 15.5 km and

σB = 1.5 km, data for PSR J0437-4715 [5]. Now
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it is possible to calculate conditional probability of

event EB that radius of neutron star corresponds to

the given measurement:

P (EB |πi ) = Φ(Ri, µB , σB), (13)

M
G
M

B
Ratio Constraint

This constraint gives region in the MGMB plane.

We need to estimate probability of closing point

Mi = (MGi,MBi) to point µ = (µG, µB). The

mean values µG = 1.249, µB = 1.36 and standard

deviations σMG
= 0.001, σMB

= 0.002 are given in

[7]. Needed probability can be calculated by follow-

ing formula:

P (EK |πi ) = [Φ (ξG) − Φ(−ξG)]·[Φ (ξB) − Φ(−ξB)] ,

(14)

where Φ (x) = Φ (x, 0, 1), ξG =
σMG

dMG

and ξB =

σMB

dMB

, dMG
and dMB

are absolute values of compo-

nents of vector d = µ − Mi, here µ = (µG, µB)
T

given int [7] and Mi = (MGi,MBi)
T

is solution of

TOV using ith vector of EoS parameters πi. Note

that formula (14) does not correspond to multivari-

ate normal distribution.

Calculation of a posteriori Probabilities

Note, that these measurements are independent

on each other. That means that we can calculate

complete conditional probability of event that con-

tracted by πi object corresponds to all measure-

ments:

P (E |πi ) = P (EA |πi ) × P (EB |πi ) × P (EK |πi ) .

(15)

Now, we can calculate probability of πi using Bayes’

theorem:

P (πi |E ) =
P (E |πi ) P (πi)

N−1
∑

j=0

P (E |πj ) P (πj)

. (16)

Conclusion and Discussion

We a play the scheme of BA for probabilistic

estimation of the EoS given by vector parame-

ter π. Varying parameters ε, γ, c2
s in intervals

[400..103]MeV/fm−3, [0..1] and [0.3..1] respectively

we explore the calculations N = 103 and the results

presented in 2. Mass-radius relation is shown on top

figure and pressure in depending on energy density

is given on bottom one. Results are shown for differ-

ent sets of neutron star configurations correspond-

ing to different sets of EoS parameters. The thick-

ness of the lines is chosen to be proportional to the

probability value of parameter vector π. We show

that the chosen constraints are not enough to dis-

tinguish two cases one with the existent of third

family of twins (two stars with same masses and

different radii) from the case where only neutron

star family is possible. This result can be also

seeing from the bottom figure of 2 where shown

EoS plotted with different thickness of the lines

corresponding to the probability value of parame-

ter vector π. It is easy to see that two branches

of EoS with and without the phase transition to

quark matter have approximately same probabil-

ity. Nevertheless, if phase transition to quark mat-

ter is possible then our constraint requires that the

phase transition should a care for energy densities

higher then 900MeV/fm−3 with density jump up

to 103MeV/fm−3. Our conclusion could be that

the current state of knowledge of observable data

which we use does not allow us to be sure about of

existences of quark matter in neutron stars.
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The M of R line marked grey is based on EoS with probability less then 10-4

The M of R line marked black is based on EoS with probability more then 10-4
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Figure 2: Mass-radius relation (on top) and pressure

vs energy density (on bottom) for different sets of

NS configurations corresponding to different sets of

EoS parameters, the thickness of the lines is cho-

sen to be proportional to the probability value of

parameter vector π.
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