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Problem. During a decade the mechanism
of quantum penetration of two bound particles
through repulsive barriers attracts attention from
both theoretical and experiment a viewpoints in re-
lation with such problems as near-surface quantum
diffusion of molecules, fragmentation in producing
very neutron-rich light nuclei, and heavy ion colli-
sions through multidimensional barriers. The gen-
eralization of the two-particle model over a quantum
system of A identical particles is of great impor-
tance for appropriate description of molecular and
heavy-ion collisions as well as a microscopic study
of tetrahedral-symmetric nuclei.

Method. We consider the penetration of cluster
of A identical quantum particles, coupled by short-
range oscillator-like interaction, through a repulsive
potential barrier [1, 2, 3]. We assume that the spin
part of the wave function is known, so that only
the spatial part of the wave function is to be con-
sidered, which may be symmetric or antisymmetric
with respect to a permutation of A identical parti-
cles. The initial problem is reduced to penetration
of a composite system with the internal degrees of
freedom, describing an (A-1)d-dimensional oscilla-
tor, and the external degrees of freedom, describ-
ing the center-of-mass motion of A particles in d-
dimensional Euclidian space. For simplicity, we re-
strict our consideration to the so-called s-wave ap-
proximation, corresponding to one-dimensional Eu-
clidian space (d=1). It is shown that the reduc-
tion is provided by using appropriately chosen sym-
metrized coordinates, rather than the conventional
Jacobi coordinates. The main goal of introducing
the symmetrized coordinates is to provide invari-
ance of the Hamiltonian with respect to permu-
tations of A identical particles. This allows con-
struction not only of basis functions, symmetric or
antisymmetric under permutations of A-1 relative
coordinates, but also of basis functions, symmet-
ric (S) or antisymmetric (A) under permutations of
A Cartesian coordinates. We refer the expansion of
the solution in this basis as symmetrized coordinate

representation (SCR).
Solution. We seek for the solution in the form

of Galerkin or Kantorovich expansions [4, 5, 6]
with unknown coefficients having the form of matrix
functions of the center-of-mass variables in the SCR.
As a result the problem is reduced to a boundary-
value problem for a system of ordinary second-order
differential equations with respect to the center-of-
mass variable. Conventional asymptotic boundary
conditions are imposed on the desired matrix solu-
tion.

A simple and clear way to construct the states
keeping the symmetry (antisymmetry) under the
permutations of A initial Cartesian coordinates,
which we refer as S (A) states, is to use the sym-
metrized relative coordinates rather than the Jacobi
ones. The transformation from the Cartesian coor-
dinates to one of the possible choices of symmetrized
ones has the form:

ξ0
ξ1
...

ξA−1

=
1√
A


1 1 1 · · · 1
1 a1 a0 · · · a0
1 a0 a1 · · · a0
...

...
...

. . .
...

1 a0 a0 · · · a1




x1
x2
...
xA

 ,

a0 = 1/(1−
√
A), a1 = a0 +

√
A.

The Schrödinger equation for (A-1)-dimensional
oscillator has known solutions. We define the SCR
in the form of linear combinations of the conven-
tional oscillator eigenfunctions. The functions, sym-
metric (or antisymmetric) with respect to permuta-
tions of A particles are built in two steps. At first
step we construct by standard way the states sym-
metric (or antisymmetric) with respect to permuta-
tions of symmetrized coordinates. These states are
symmetric (or antisymmetric) with respect to per-
mutation of A− 1 particles. And at second step we
check symmetry (or antisymmetry) with respect to
one permutation x2 ←→ x1 only, that simplifies its
practical implementation of the method. The ex-
amples of first S and A oscillator eigenfunctions for
A = 3 and A = 4 are shown on Figs. 1 and 2.
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Fig 1. Profiles of the first eight oscillator symmetric (up-

per panels) and antisymmetric (lower panels) with re-

spect to permutation of A=3 particles eigenfunctions at

A = 3 in the plane (ξ1, ξ2).
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Fig. 2. Profiles of the first six oscillator symmetric (up-

per) and antisymmetric (lower) with respect to permuta-

tion of A=4 particles eigenfunctions at A = 4 in internal

3D space (ξ1, ξ2, ξ3).

Fig. 3. Maxima and minima positions of functions of

third, fourth S and first A states from Fig 2.

Note that four maxima and four minima of the
third S eigenfunction coincide with the vertices of
two tetrahedrons forming a stella octangula. Eight
maxima and six outer minima for S eigenfunction
(number 4) are positioned at the vertices of a cube
and an octahedron, the edges of which are shown
by black and grey lines, respectively. The positions
of twelve maxima of the first A oscillator eigenfunc-
tion coincide with the vertices of a polyhedron with
20 triangle faces (only 8 of them being equilateral
triangles) and 30 edges, 6 of them having the length
2.25 and the other having the length 2.66 (see Fig.
3).
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Fig. 4. The Gaussian-type potential V (xi) =
α√
2πσ

exp(− x2i
σ2 ) at σ = 0.1 (in oscillator units) and the

corresponding 2D barrier potential at α = 1/10, σ = 0.1.

We seek for the solution in the form of Galerkin-
type expansion in terms of cluster functions in the
SCR with unknown coefficients having the form of
matrix functions of the center-of-mass variable. As
a result the problem is reduced to a boundary-value
problem for a system of ordinary second-order dif-
ferential equations with respect to the center-of-
mass variable. Figure 4 illustrates the Gaussian po-
tential and the corresponding barrier potentials in
the symmetrized coordinates at A = 2. This poten-
tial has the oscillator-type shape, and two barriers
are crossing at the right angle. In the case A ≥ 3,
the hyperplanes of barriers are crossing at the right
angle, too. The corresponding effective potentials
are shown in Fig. 5.

Fig. 5. Diagonal Vjj (solid) and nondiagonal Vj1
(dashed) effective potentials for symmetric (left) and an-

tisymmetric (right) basis states.

The asymptotic boundary conditions involving
unknown amplitudes of reflected and transmitted
waves are imposed on the desired matrix solution.
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The results of calculations are analyzed with par-
ticular emphasis on the effect of quantum trans-
parency that manifests itself as nonmonotonic en-
ergy dependence of the transmission coefficient due
to resonance tunnelling of the bound particles in S
(A) states through the repulsive potential barriers
(see Fig. 6). This nonmonotonic dependence is ex-
plained by existence of sub-barrier quasistationary
states, imbedded in the continuum. The probabil-
ity densities of the coefficient functions for A = 2
symmetric states revealing resonance transmission
and total reflection are shown in Fig. 7.
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Fig. 6. The total probabilities of transmission through

the repulsive Gaussian barriers for the system of A

= 2,3,4 particles, coupled by the oscillator potential

and being initially in the ground symmetric (left) or

antisymmetric (right) state, vs the energy E (in osc.u.).

Fig. 7. The sub-barrier enhancement of probability den-

sities of the coefficient functions and profiles of proba-

bility densities |Ψ(ξ0, ξ1)|2 for the symmetric states of

A = 2 particles, revealing resonance transmission and

total reflection at resonance energies.
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Conclusion. We formulated a model of A iden-
tical particles bound by the oscillator-type potential
under the influence of the external field of a target in
the new symmetrized coordinates. The constructive
algorithm SCR of symmetrizing or antisymmetriz-
ing the A-1-dimensional harmonic oscillator basis
functions with respect to permutations of A identi-
cal particles was elaborated. We demonstrated the
effect of quantum transparency, i.e., the resonance
tunnelling of several bound particles through repul-
sive potential barriers. We proved that this effect is
due to the existence of sub-barrier quasistationary
states, imbedded in the continuum.
Prospects. The approach has been applied to the
analysis of quantum transparency effect for model
of quantum diffusion of molecules [7]. In bench-
mark calculation we use the Gaussian-type barrier,
the Morse potential supported five bound states and
a resulting 2D potential is shown in Fig. 8. We
present in Fig. 9 effect of quantum transparency,
manifesting itself in nonmonotonic resonance-type
dependence of the transmission coefficient upon the
energy of the diatomic molecule. Finally, in Fig.
9 we show the comparison quantum and classical
diffusion coefficient. One can see that the quan-
tum diffusion takes place at low temperature be-
low barrier energy while classical diffusion exists at
higher temperature. The approach can be adapted
and applied to the analysis of quantum diffusion of
micro-clusters through surfaces, and the fragmen-
tation mechanism in producing very neutron-rich
light nuclei, as well as trapped-ion quantum sim-
ulator. In connection with the intense search for
superheavy nuclei, of particular significance is the
application of the proposed approach to the mathe-
matically consistent analysis of mechanisms of sub-
barrier fusion of heavy nuclei and the study of fusion
rate enhancement by means of resonance tunneling.
The work was supported by grants 13-602-02 JINR,
11-01-00523 and 13-01-00668 RFBR, 0602/GF MES
RK and the Bogoliubov-Infeld program.

Fig. 8. Gaussian-type barrier Ũ0 (x̃i) = Â exp
(
− x̃

2
i

2σ

)
,

at Â = 236.510003758401 = 1280K, σ = 5.23 ·
10−2, t The two-particle interaction potential, Ṽ (X̃) =

Â{exp[−2(|X̃|− r̂eq)ρ̂]−2 exp[−(|X̃|− r̂eq)ρ̂]}, r̂eq = 2.47,

ρ̂ = 2.96812423381643 and corresponding 2D potential.
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Fig. 9. The total probability of penetration from all 5

channel with energies (in K) to all five open channels,

and the diffusion coefficient or thermal rate constant vs.

temperature. Comparison with the classical diffusion co-

efficient.
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