

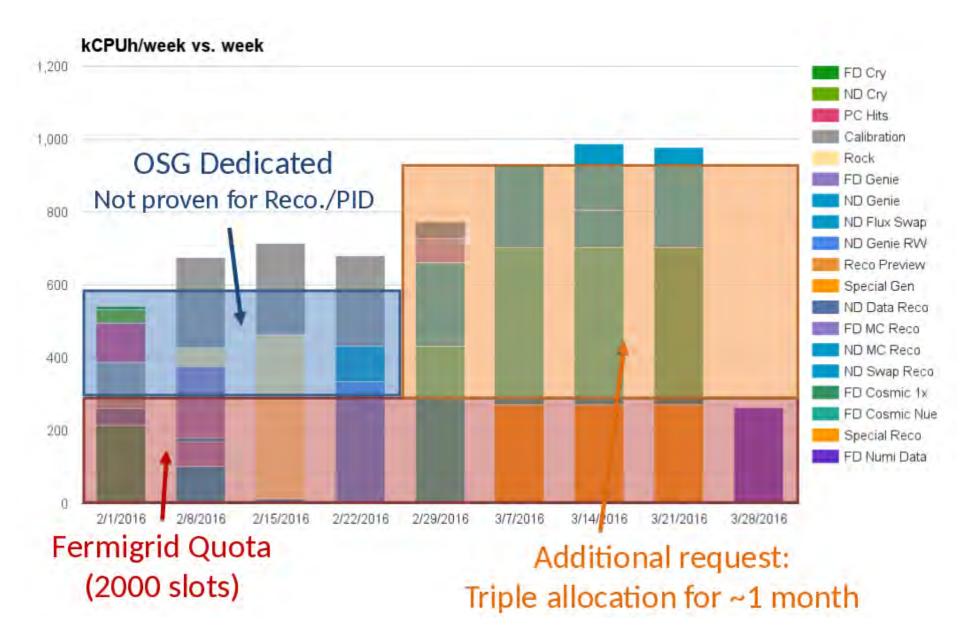
Joint Institute for Nuclear Research

JINR Computing Infrastructure for the NOvA Experiment

N. Balashov

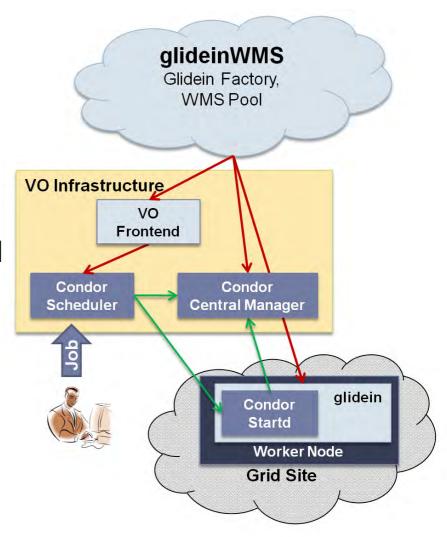
NOvA Computing Overview

- General purpose Virtual Machines (GPVM) at FNAL: code development and quick test jobs only
- Fermigrid: dedicated resources to run resource intensive workloads
- Open Science Grid (OSG) infrastructure: globally distributed computing resources that supplement the main Fermigrid quota


Interactive Virtual Machines

Initial Setup (2014)	Current Setup
 4 machines: 4 cores, 8 GB of RAM and 100GB HDD each OpenVZ virtualization Manually installed software (Art Framwork, Cisco Anyconnect, etc.) X2go to access GUI JINR Kerberos authentication 	 6 machines: 4 cores, 8 GB of RAM and 210 GB HDD each 20 TB NFS Storage KVM virtualization Software accessible via the CernVM-FS repository Maximum similarity to the FNAL GPVMs
 Minimal virtualization overhead No need to keep separate kernel for each container – less memory consumption 	 No software limitations Any OS, any kernel modules can be loaded from within the VM
 Modified Linux-kernel – linux-only, outdated version Kernel modules need to be loaded on the host first No autofs (cvmfs needs to be configured and mounted manually) 	Higher virtualization overhead

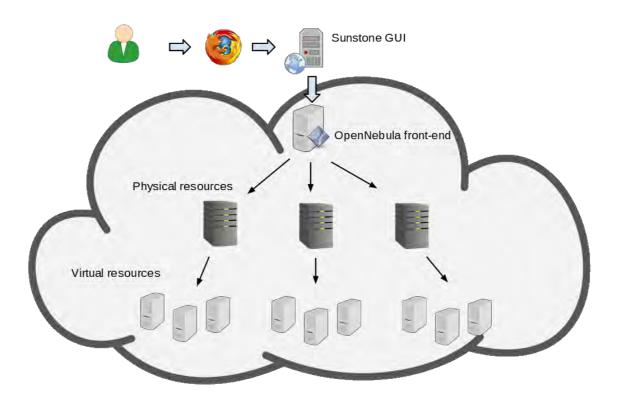
Interactive Virtual Machines


- Keep maximum similarity to the NOvA general purpose virtual machines (GPVM) at FNAL
- Interactive VMs are well-suited for the software development, evaluation and not too computationally intensive workloads
- Provide the most up-to-date NOvA environment
- Online 24/7 and accessible via ssh/X2go

NOvA CPU Request Spikes

NOvA Computing Infrastructure

- Extensive workloads are split in jobs which are processed in batches
- A Workload Management System controls the jobs – GlideinWMS at FNAL
- External resource providers are utilized via Open Science Grid (OSG) – American Grid infrastructure
- A Tier-2 batch cluster at JINR was connected to OSG to support NOvA
- A new virtual HTCondor-based cluster was created which was first dedicated to NOvA

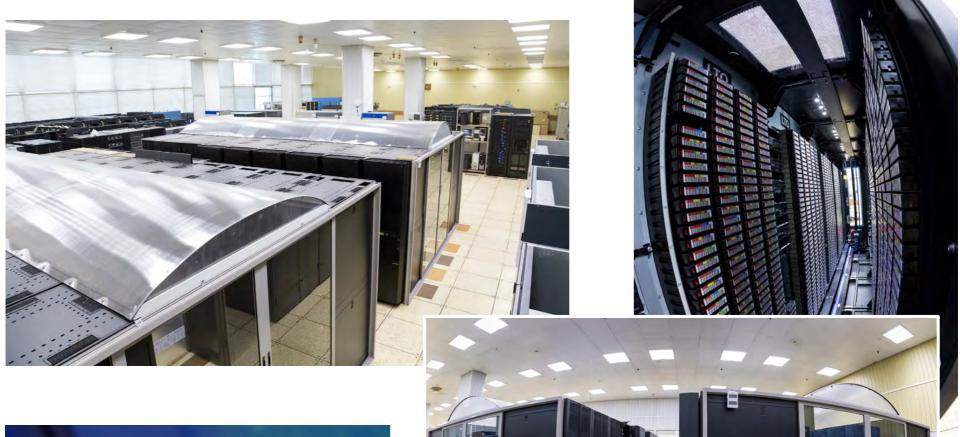


JINR Resources Extension

- We had two options at that moment:
 - add new servers to the existing Tier-2 cluster
 - put them in the Cloud service and install new virtualized infrastructure
- Opted out from extending Tier-2 in favor of the cloud for 3 main reasons:
 - Extremely slow configuration changes
 - Batch mode only
 - No enthusiasm from T2 team

Cloud Computing

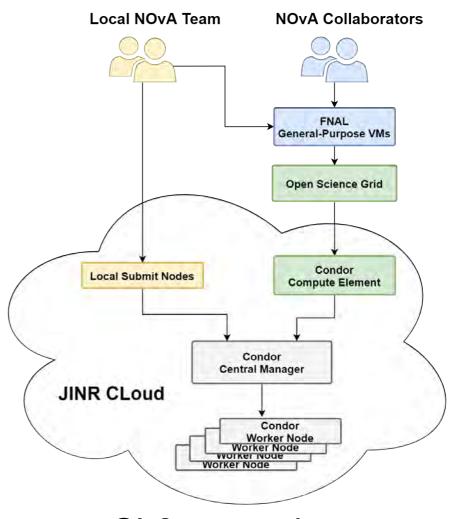
- Technically clouds can be directly attached to the GlideinWMS, but that would require significant efforts from FNAL computing people
- We had to install a new fully virtualized batch cluster


NOvA Computing Nodes

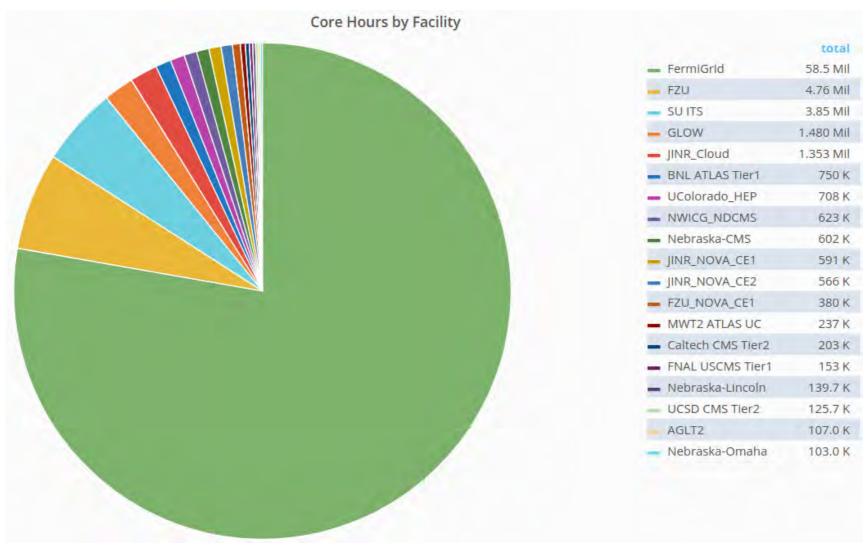
- 25 additional servers were purchased and added to the cloud in 2015-2020
- First servers had different configuration and were modernized: RAM and 10Gb network adapters were added

Platform	CPU	RAM	Disk	Network Interfaces
5 x Dell	2xE5-	128 GB	2x2TB NL	4x1Gb and 2x10Gb
PowerEdge R430	2650v3		SAS	Ethernet
4 x Dell	2xE5-	128 GB	4x4TB NL	4x1Gb and 2x10Gb
PowerEdge R430	2650v3		SAS	Ethernet
5 x Dell	2xE5-	128 GB	2x4TB NL	4x1Gb and 2x10Gb
PowerEdge R430	2650v4		SAS	Ethernet
5 x Dell	2xSilver	128 GB	2x120GB	4x1Gb and 2x10Gb
PowerEdge R440	4116		SSD	Ethernet
5 x Dell	2xSilver	128 GB	2x120GB	4x1Gb and 2x10Gb
PowerEdge R440	4214		SSD	Ethernet

JINR Datacenter

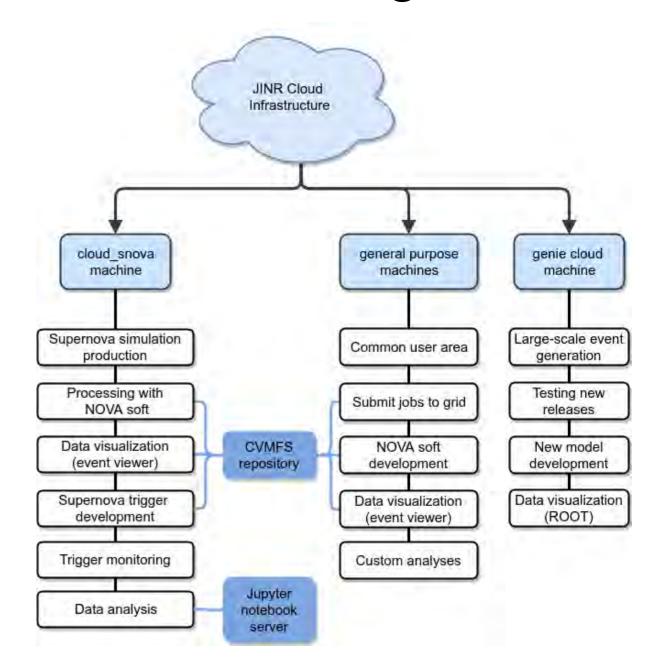


micc.jinr.ru


HTCondor Cloud Cluster

- Local JINR NOvA members can submit grid jobs and local jobs, all other NOvA members – grid jobs only
- Local submit nodes are similar to FNAL GPVMs with a few additions:
 - JINR Kerberos authentication
 - Additional 20 TB NFS storage
- Since everything in the cluster is a virtual machine, it can be easily scaled according to the needs
- Mu2e and DUNE VOs were provided access

SL6 everywhere...

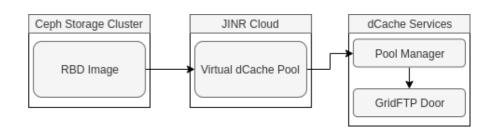

NOvA Resource Usage

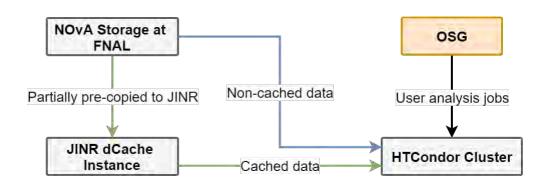
Statistics for the period January, 1 2018 to March 26, 2020

Non-Batch Cloud Usage

- Cloud is universal
- Users can have personal Vms
- Interactive acces via ssh/X2go/VNC
- Any OS and software can be installed
- Can host webservices (like Jupyter notebooks)

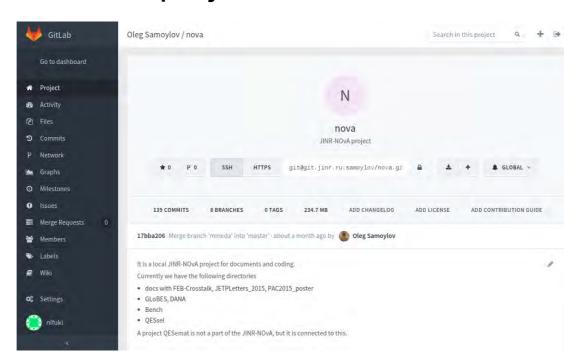
Storage Nodes


- 4 new storage servers were purchased and added to the cloud Ceph storage
- 448 TB of raw space with triple replication
- Provides virtual block devices (VBD) used as disks for all cloud VMs
- A dedicated VM exports 20 TB VBD as an NFS share to all NOvA machines in the cloud
- Has an S3 interface and potentially can be used as a CVMFS backend for storing containers



Platform	CPU	RAM	Disk	Network Interfaces
Dell PowerEdge R730xd	2xE5-2620v4	128 GB	2x400 GB SSD, 16x8 TB HDD	4x1Gb and 2x10Gb Ethernet
Dell PowerEdge R740xd	2xSilver 4114	128 GB	2x120 GB SSD, 12x10 TB HDD	4x1Gb and 2x10Gb Ethernet
Dell PowerEdge R740xd	2xSilver 4114	128 GB	2x400 GB SSD, 10x10 TB HDD	4x1Gb and 2x10Gb Ethernet
Dell PowerEdge R740xd	2xSilver 4114	128 GB	2x400 GB SSD, 10x10 TB HDD	4x1Gb and 2x10Gb Ethernet

Storage Element


- We used a dCache instance already installed in LIT
- ~3 TB were provided by LIT
- 50 TB attached as a block device to a cloud VM which was configured as a dCache pool
- Permissions to clone datasets were acquired in NOvA SAM - Sequential Access via Metadata data handling system
- Waiting for the main NOvA SAM station at FNAL to be configured to automatically prefer JINR storage at our cluster

Side-projects: GitLab

- GitLab service at git.jinr.ru was first deployed by NOvA JINR team request
- It became a common JINR service
 - Almost 400 users
 - More than 400 projects

DUNE Resource Needs

Total Needs

- Simplified terms for current DUNE sites
 - Tape Site (Tier 1) tape/staging
 - Disk Site (Tier 2) disk + CPU
 - Compute Site (Tier 3) CPU + cache
 - Analysis Site (Tier 3) CPU + cache
 - HPC (HPC, laaS)
- Goal is to have resource split between FNAL and other institutions – 25% / 75%
- Notwithstanding the "Request" to any country wishing to make a serious contribution is
 - at least 5% of requirements
 - preferably 10%

Resource	2020	2021	2022
Disk (PB)	15	18	24
Tape (PB)	19	28	37
CPU (kHS06-years)	33.1	51.9	53.1
CPU Cores	2200	3460	3540

Plans on Computing

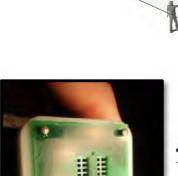
- NOvA computing resources are expected to be increased to ~1000 cores during 2020
- JUNO servers are being set up with ~2000 cores
- The idea is to unite all resources of the JINR neutrino projects into one shared system – Neutrino Platform
- CPU capacity of the combined Neutrino Platform should be enough to become the Tier-2 site for the DUNE and to represent Russian contribution into the experiment
- While CPU can be shared between the experiments, disk storage must be dedicated to DUNE: ~2.5 PB storage needs to be acquired

Computing Manpower

- NOvA Support:
 - Nikita Balashov: GPVM and HTCondor system administration, technology evaluation
 - Evgeniy Kuznetsov: HTCondor system administration
 - Nikolay Kutovskiy: procurements, cloud management
 - Andrey Sheshukov: GPVM software environment
- Same people are expected to support the DUNE experiment
 - Oleg Samoylov: computing consortium representative
 - Nikita Balashov: technical liaison

Remote Operations Center

NOvA detectors


A NOvA cell

To APD

Extruded PVC cells filled with

11M liters of scintillator
instrumented with
λ-shifting fiber and APDs

Far Detector 14 kton 896 layers

32-pixel APD

Fiber pairs from 32 cells

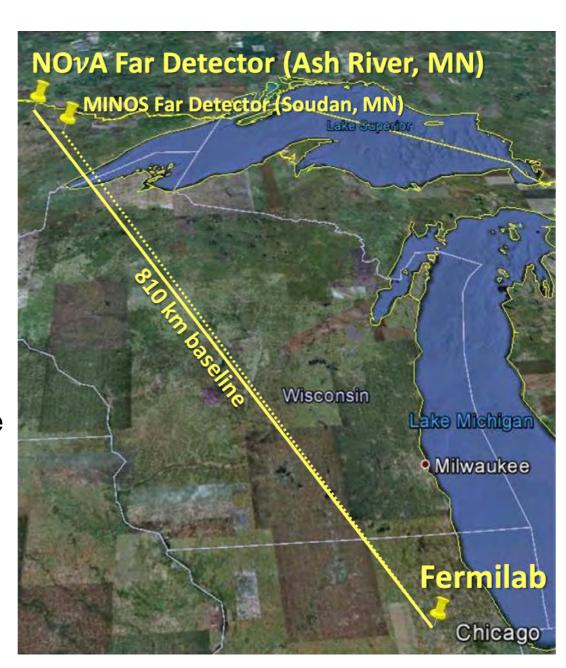
Far detector:

14-kton, fine-grained, low-Z, highly-active tracking calorimeter

→ 344,000 channels

Near detector:

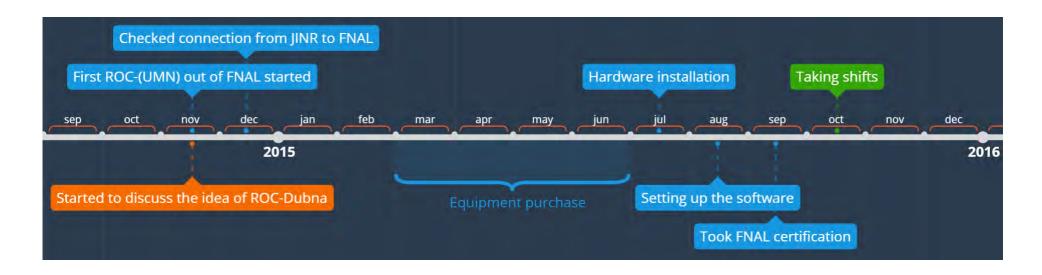
0.3-kton version of the same

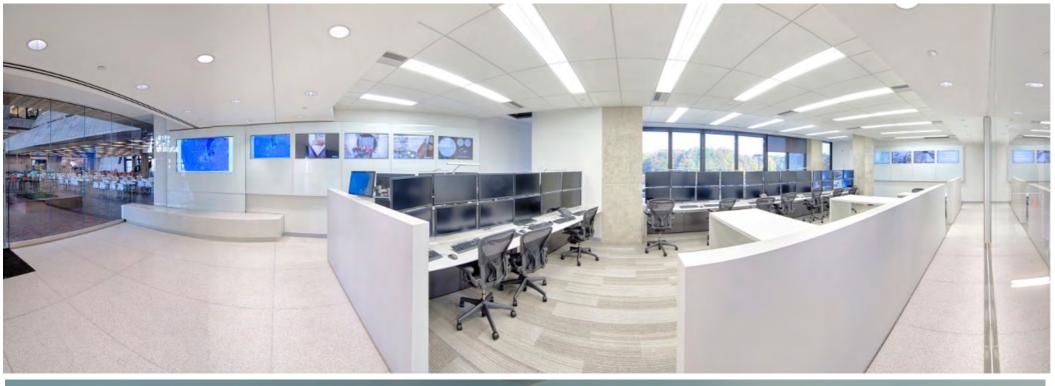

→ **20,000** channels

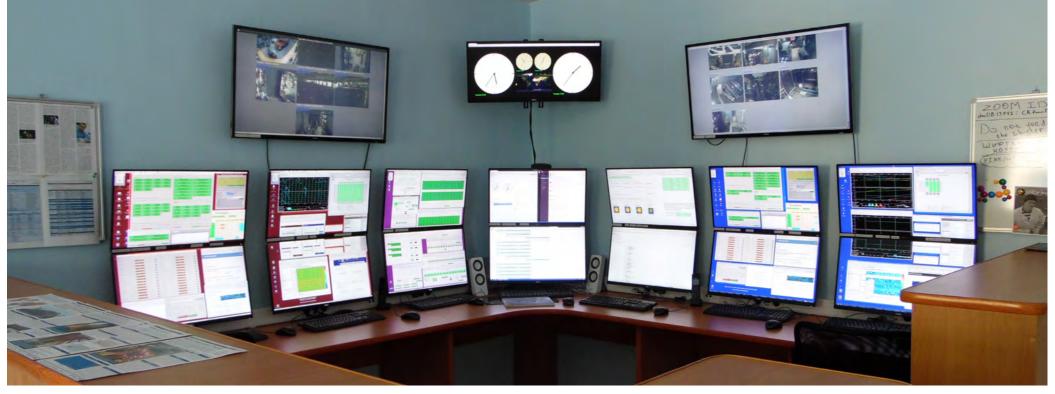
4 cm × 6 cm

Remote Control

- Studying of the Neutrino
 Oscillation Phenomenon
 requires long baseline for
 Neutrino Source and (Far)
 Detector
- The data is first recorded to the local storage of each detector and then gets transferred to FNAL
- More efficient monitoring for the system is to use one (Remote)
 Operation Center for both places in the same time

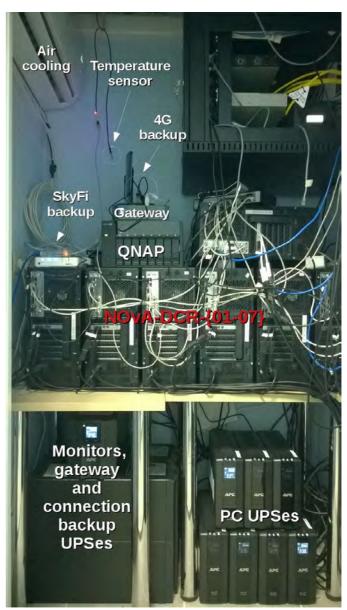

Remote Control

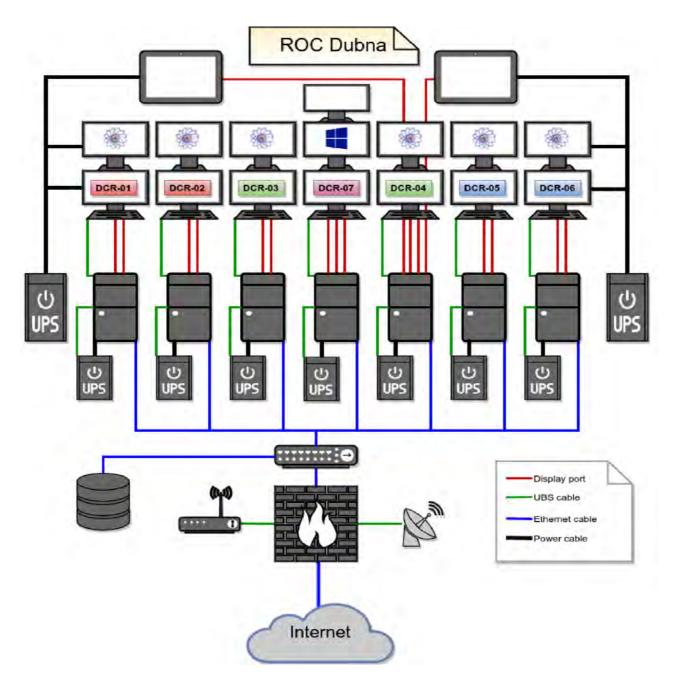

- This idea came to Fermilab after starting the LHC Era
- All the NuMI experiments develop Remote Operation Centers (ROC)
- Main Remote Operation Center ROC-West is placed in Wilson Hall at FNAL
- 25 NOvA ROCs are in operation by now



ROC-Dubna Timeline

- The NOvA detectors are operated from ROC-West at FNAL since 2013
- It was the ROC-UMN at Minnesota University that first started its operation from the non-Fermilab area since November, 2014
- Right after the ROC-UMN was launched we started disscussing the ROC-Dubna idea
- ROC-Dubna hosted first shifters in October, 2015 and became the first ROC outside the US





Backstage

- All the computing hardware is located in a dedicated server room bellow the ROC
- Air cooling system prevents overheating of such a dense setup
- UPSs should keep computers running for ~1 hour – enough to call the Run Coordinator and find a backup shifter
- 4G and SkyFi back up Internet channels

ROC-Dubna Scheme

How ROCs work

- 5 active VNC-sessions are tunneled to Near and Far Detector Nodes at FNAL through the secure connection
- 1 Linux Node is used for Web-based monitoring (Beam, ND/FD Cameras, Data transfer control, Ganglia, Nearline)
- A Windows Node is used for Communication (NOvA electronic loogbook, latest version of Expert contact and Bulletin board, Polycom via Vidyo, Zoom, Slack-chat, Skype)
- Infrastructure is designed for the 8 hours long work (stable internet, international landline, kitchen)

Monitoring

ROC-Dubna Crew

- Alexander Antoshkin, Super-liaison, ROC-Dubna liaison, Hardware and Software expert
- Oleg Samoylov, ROC-manager, Software expert
- Andrey Sheshukov, Software expert
- Nikolay Anfimov, Hardware expert
- Chris Kullenberg, Super-Shifter
- Nikita Balashov, Software and IT-support
- Andrey Dolbilov, Internet and IT emergency

Advantages to have ROC in Dubna

- ROC-Dubna allows taking Shifts and save traveling budget and time scheduling / shifting / jet lag
- ROC-Dubna is an Operation and Communication Center of the NOvA experiment ~8000 km and 8/9 time zones away (night shifts during daytime)
- Our Russian colleagues (INR, Moscow and FIAN) have interest to visit us
- ROC-Dubna is a public place open for excursions and is visited by Scholars, Teachers, Students, Journalists and other JINR guests.

Plans

- NOvA was extended to operate till 2025
- Modern computer equipment lifetime is 5 years it is time to prepare hardware upgrade
- Scientific Linux 6 will reach end of life in November of 2020 – migration of linux nodes to a modern OS is required
- Add visualization and notification system based on Grafana (with current Zabbix instance as a data provider) located out of ROC

Summary

- Cloud virtual computing infrastructure was created for the NOvA
 - Functions normally at current scale
 - Local and Grid jobs supported
 - Mu2e and DUNE VOs already supported
 - To have a more serious contribution to DUNE computing infrastructure needs to be extended
- Scientific Linux 6 will reach end of life in November of 2020 migration of linux nodes to a modern OS is required
- ROC-Dubna operates normally, but needs to be upgraded