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A long-standing issue of “quantum analogues” of the statistical dis-
tributions of classical mechanics consists in a correct definition of
the mapping between operators on the Hilbert space of a finite-
dimensional quantum system and the so-called quasiprobability dis-
tributions [1] defined over the symplectic flag manifold [2, 3].
Guiding by the Weyl-Stratonovich correspondence [4, 5], we propose
the construction method of the Wigner function (WF) for an N -level
quantum system. We derive algebraic equations for eigenfunctions of
the Stratonovich-Weyl (SW) kernel of WF and discuss an arbitrari-
ness of its solution. The presentation is exemplified by considering
the WFs for 2, 3 and 4-dimensional quantum systems. The results of
analytical and numerical computations of the WF characteristics with
various SW kernels, including the probability for the WFs from the
corresponding Hilbert-Schmidt ensembles to take negative values will
be given.

Introduction
The Wigner function W%(ΩN ) of an N -dimensional quantum system,

W%(ΩN ) = tr [%∆(ΩN )] ,

is constructed from the density matrix % expanded over the basis of
su(N) algebra λ = {λ1 , · · · , λN 2−1} , with the (N2− 1)-dimensional
Bloch vector ξ:

% =
1

N

[
I +

√
N (N − 1)

2
(ξ ,λ)

]
,

and the SW kernel ∆(ΩN ) defined over the phase space ΩN . Accord-
ing to the SW correspondence, ∆(ΩN ) should be compatible with:
1. Reconstruction postulate: the state % can be reconstructed from the

WF (1) as
% =

∫
ΩN

dΩN ∆(ΩN )W%(ΩN ) ; (1)

2. Hermicity postulate:

∆(ΩN ) = ∆(ΩN )† ; (2)

3. Finite norm postulate: the state norm is given by the integral of the
Wigner distribution

tr[%] =

∫
ΩN

dΩNW%(ΩN ) ,

∫
ΩN

dΩN ∆(ΩN ) = 1 ; (3)

4. Covariance postulate: the unitary transform %′ = U(α)%U†(α) in-
duce the kernel change

∆(Ω′N ) = U(α)†∆(ΩN )U(α) . (4)

Here ΩN denotes the flag manifold FNd1,d2,...,dr , where
(d1, d2, . . . , dr,

∑
di = N) is a sequence of positive integers deter-

mined from the algebraic multiplicity of SW kernel, and dΩN agrees
with the Haar measure on the SU(N) group up to a constant.

In the article [3], based on the postulates (1)-(4), the following “mas-
ter equations” have been derived:

tr [∆(ΩN )] = 1 , tr[∆(ΩN )2] = N . (5)

Using solutions to the “master equations” (5) , we write down the sin-
gular value decomposition (SVD) for ∆(ΩN ) with descending order of
its eigenvalues

∆(Ω|ν) = U(Ω)

 I
N

+

√
(N2 − 1)

2N

∑
λ∈H

µs(ν)λs

U(Ω)†. (6)

In (6) diagonalizing unitary matrix is U(ΩN ) and the diagonal matrix
is expanded over the maximal Abelian subalgebra H ⊂ SU(N).

The spectrum of ∆(Ω) is constrained: µ2
3(ν) + · · · + µ2

N 2−1(ν) = 1 ,
and moduli parameters ν = (ν1, · · · , νN−2) distinguish N − 2 unitary
non equivalent Wigner functions

W
(ν)
ξ (ΩN ) =

1

N

[
1 +

N2 − 1√
N + 1

(n, ξ)

]
, (7)

where n =
∑N 2−1

3 µs(ν)n(s) and n(s2−1)
µ = 1

2tr
(
Uλs2−1U

†λµ
)

.

Negativity of the Wigner functions
The WF (7) is not a proper distribution; it is certainly non nega-
tive for states the Bloch vectors of which lie inside the ball of radius
r∗(N) =

√
N + 1/(N2 − 1)

0 ≤ ξ2 ≤ r2
∗(N) ,

while in complementary domain r2
∗(N) < ξ2 ≤ 1 , the WF can take

negative values.
In order to quantitatively characterize the deviation of WFs from clas-

sical distributions, we generate a random quantum state, build the cor-
responding WFs and compute the ratio:

P(−)(N) :=
Number of states with negative WF

Total number of generated states

The quantity P(−)(N) has a meaning of the “negativity probability”,
i.e., the probability for WFs to take negative values for a given ensem-
ble of random states of N -level system.

Generating the Hilbert-Schmidt ensemble
The algorithm for the generation of density matrices from the Hilbert-
Schmidt ensemble (HSE) of an N -level quantum system includes two
steps:

•Generate N × N matrices Z from the complex Ginibre ensemble,
i.e. the family of matrices in which each entry is an independent
complex Gaussian random variable of mean zero and variance one;

•Using Z and its complex conjugate Z† , compute the density matri-
ces

%HS =
ZZ†

tr
(
ZZ†

)
describing states from the Hilbert-Schmidt ensemble.

Qubit – two level quantum system
The master equations (5) for two level quantum system, the qubit, de-
termine spectrum of SW kernel ∆(2) uniquely:

spec
(

∆(2)
)

= 1/2
{

(1 +
√

3) , (1−
√

3)
}
.

The states WFs of which are negative, lie outside the Bloch ball of ra-
dius r∗(2) = 1/

√
3 . The “negativity probability” of qubit from HSE is

P(−)(2) = 0.115 .

Qutrit – three level quantum system
For a 3-level system there is 1-parameter family of SW kernels

spec
(

∆(3)(ν)
)

= 1/2 {1− ν + δ , 1− ν − δ , 2ν}

with δ =
√

(1 + ν)(5− 3ν) and ν ∈ (−1,−1
3) .

The edge points ν = −1 , ν = −1
3 represent two degenerate kernels

spec
(

∆(3)(−1)
)

= {1, 1,−1} , spec
(

∆(3)(−1

3
)

)
=

1

3
{5,−1,−1} .

while point ν = (1−
√

5)/2 corresponds to a singular kernel

spec
(

∆
(3)
sing

)
= 1/2

{
1 +
√

5 , 0 , 1−
√

5
}
.

Figure 1: The moduli space of qutrit rep-
resented by arc of a unit circle. The an-
gle ζ ∈ [0, π/3] is related to the parame-
ter ν in (6) labeling unitary nonequivalent
WFs, ν = 1

3 −
4
3 cos(ζ) .

The “negativity probability” of the WF for the qutrit from HSE is

P(−)(3) = 0.137 .

The distribution of WF negativity P(−)(ξ) with respect to the qutrit
Bloch radius ξ for three different SW kernels is depicted in the Fig. 2;
two degenerate and one singular ones. The “negativity probability” of
qutrit WF as the function of moduli parameter ζ = arccos(1−3ν

4 ) for
generic kernel is depicted in the Fig. 3 .
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Figure 2: Negativity probability
dependence on Bloch radius for
degenerate and singular kernels.
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Figure 3: Negativity probability
of HSE qutrit WF as function of
moduli parameter ν .

Quatrit – four level quantum system
The master equations (5) for a quatrit determine 2-parameter family of
SW kernels. The spectrum of ∆(4)(ν1, ν2) is determined by points on
a unit 2-sphere, µ2

3(ν) + µ2
8(ν) + µ2

15(ν) = 1 satisfying inequalities:

µ3 ≥ 0 , µ8 ≥
µ3√

3
, µ15 ≥

µ8√
2
.

Constraints (8) define the moduli space of quatrit SW kernel as one out
of 24 possible spherical triangles which tessellate a unit sphere and the
angles of which are (π/2 , π/3 , π/3) . Such a triangle is known as the
Möbius Triangle with tetrahedral symmetry (Fig. 4) .

Figure 4: Demonstration
of the distribution of WF
negatvity probability over
the quatrit moduli space
represented by the Möbius
spherical triangle (2, 3, 3)
on a unit sphere. The col-
orbar identifies colors with
the range of WF negatvity
probability and the SW
kernels with a degenerate
spectrum like π1 > π2 =
π3 > π4 are marked by
symbol (12|34) following
V.I.Arnold’s notation.

Multilevel quantum system
The results of our studies of WF negativity with maximal singularity
SW kernels, i.e. kernels spectrum of which have N − 2 vanishing
eigenvalues, are given in the (Fig. 5) .
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Figure 5: The negativity prob-
ability of WF for N -level
system with Hilbert-Schmidt
states calculated with the max-
imally singular SW kernel.
With growing number of lev-
els N → ∞ , the negativity
probability tends to the value
P (−)(∞) = 0.158655 .

Conclusions

1. The “master equations” for SW kernel ∆(Ω) are derived;

2. Ambiguity in the solution to “master equations” is identified and
the moduli space of the WF is determined;

3. Probabilistic characteristics of WF negativity are presented.
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