STUDIES OF THE WIGNER QUASIPROBABILITY DISTRIBUTIONS

On the negativity of the Wigner functions for N-level quantum systems

Vahagn Abgaryan¹, Arsen Khvedelidze^{1,2,3}, Ilya Rogojin¹ and Astghik Torosyan¹

A long-standing issue of "quantum analogues" of the statistical distributions of classical mechanics consists in a correct definition of the mapping between operators on the Hilbert space of a finitedimensional quantum system and the so-called quasiprobability distributions [1] defined over the symplectic flag manifold [2, 3]. Guiding by the Weyl-Stratonovich correspondence [4, 5], we propose the construction method of the Wigner function (WF) for an N-level quantum system. We derive algebraic equations for eigenfunctions of the Stratonovich-Weyl (SW) kernel of WF and discuss an arbitrariness of its solution. The presentation is exemplified by considering the WFs for 2, 3 and 4-dimensional quantum systems. The results of analytical and numerical computations of the WF characteristics with various SW kernels, including the probability for the WFs from the corresponding Hilbert-Schmidt ensembles to take negative values will be given.

Introduction

The Wigner function $W_{\rho}(\Omega_N)$ of an N-dimensional quantum system,

$$W_{\varrho}(\Omega_N) = \operatorname{tr}\left[\varrho\,\Delta(\Omega_N)\right] \,,$$

is constructed from the density matrix ρ expanded over the basis of $\mathfrak{su}(N)$ algebra $\lambda = \{\lambda_1, \cdots, \lambda_{N^2-1}\}$, with the (N^2-1) -dimensional Bloch vector $\boldsymbol{\xi}$:

$$\varrho = \frac{1}{N} \left[I + \sqrt{\frac{N(N-1)}{2}} \left(\boldsymbol{\xi} , \boldsymbol{\lambda} \right) \right],$$

and the SW kernel $\Delta(\Omega_N)$ defined over the phase space Ω_N . According to the SW correspondence, $\Delta(\Omega_N)$ should be compatible with:

1. **Reconstruction postulate**: the state ρ can be reconstructed from the WF (1) as

$$\varrho = \int_{\Omega_N} \mathrm{d}\Omega_N \,\Delta(\Omega_N) W_{\varrho}(\Omega_N) \,; \tag{1}$$

2. Hermicity postulate:

$$\Delta(\Omega_N) = \Delta(\Omega_N)^{\dagger}; \qquad (2)$$

3. Finite norm postulate: the state norm is given by the integral of the Wigner distribution

$$\operatorname{tr}[\varrho] = \int_{\Omega_N} \mathrm{d}\Omega_N W_{\varrho}(\Omega_N) , \qquad \int_{\Omega_N} \mathrm{d}\Omega_N \,\Delta(\Omega_N) = 1 ; \quad (3)$$

4. Covariance postulate: the unitary transform $\rho' = U(\alpha)\rho U^{\dagger}(\alpha)$ induce the kernel change

$$\Delta(\Omega'_N) = U(\alpha)^{\dagger} \Delta(\Omega_N) U(\alpha) .$$
(4)

Here Ω_N denotes the flag manifold $\mathbb{F}^N_{d_1,d_2,\ldots,d_r}$, where $(d_1, d_2, \ldots, d_r, \sum d_i = N)$ is a sequence of positive integers determined from the algebraic multiplicity of SW kernel, and $d\Omega_N$ agrees with the Haar measure on the SU(N) group up to a constant.

In the article [3], based on the postulates (1)-(4), the following "master equations" have been derived:

$$\operatorname{tr}[\Delta(\Omega_N)] = 1, \qquad \operatorname{tr}[\Delta(\Omega_N)^2] = N.$$
 (5)

Dimitar Mladenov⁴,

Using solutions to the "master equations" (5), we write down the singular value decomposition (SVD) for $\Delta(\Omega_N)$ with descending order of its eigenvalues

$$\Delta(\Omega|\boldsymbol{\nu}) = U(\Omega) \left[\frac{I}{N} + \sqrt{\frac{(N^2 - 1)}{2N}} \sum_{\lambda \in H} \mu_s(\boldsymbol{\nu})\lambda_s \right] U(\Omega)^{\dagger}.$$
 (6)

In (6) diagonalizing unitary matrix is $U(\Omega_N)$ and the diagonal matrix is expanded over the maximal Abelian subalgebra $H \subset SU(N)$.

The spectrum of $\Delta(\Omega)$ is constrained: $\mu_3^2(\boldsymbol{\nu}) + \cdots + \mu_{N^2-1}^2(\boldsymbol{\nu}) = 1$, and moduli parameters $\boldsymbol{\nu} = (\nu_1, \cdots, \nu_{N-2})$ distinguish N-2 unitary non equivalent Wigner functions

$$W_{\boldsymbol{\xi}}^{(\boldsymbol{\nu})}(\Omega_N) = \frac{1}{N} \left[1 + \frac{N^2 - 1}{\sqrt{N+1}} (\boldsymbol{n}, \boldsymbol{\xi}) \right] , \qquad (7)$$

where $\boldsymbol{n} = \sum_{3}^{N^2 - 1} \mu_s(\boldsymbol{\nu}) \boldsymbol{n}^{(s)}$ and $n_{\mu}^{(s^2 - 1)} = \frac{1}{2} \operatorname{tr} \left(U \lambda_{s^2 - 1} U^{\dagger} \lambda_{\mu} \right).$

Negativity of the Wigner functions

The WF (7) is not a proper distribution; it is certainly non negative for states the Bloch vectors of which lie inside the ball of radius $r_*(N) = \sqrt{N+1}/(N^2-1)$

$$0 \le \boldsymbol{\xi}^2 \le r_*^2(N) \,,$$

while in complementary domain $r_*^2(N) < \boldsymbol{\xi}^2 \leq 1$, the WF can take negative values.

In order to quantitatively characterize the deviation of WFs from classical distributions, we generate a random quantum state, build the corresponding WFs and compute the ratio:

$$\mathcal{P}^{(-)}(N) := \frac{Number \ of \ states \ with \ negative \ WF}{Total \ number \ of \ generated \ states}$$

The quantity $\mathcal{P}^{(-)}(N)$ has a meaning of the "negativity probability", i.e., the probability for WFs to take negative values for a given ensemble of random states of N-level system.

Generating the Hilbert-Schmidt ensemble

The algorithm for the generation of density matrices from the Hilbert-Schmidt ensemble (HSE) of an N-level quantum system includes two steps:

- Generate $N \times N$ matrices Z from the complex Ginibre ensemble, i.e. the family of matrices in which each entry is an independent complex Gaussian random variable of mean zero and variance one;
- Using Z and its complex conjugate Z^{\dagger} , compute the density matrices

$$\varrho_{\rm HS} = \frac{ZZ^{\dagger}}{\mathrm{tr}\left(ZZ^{\dagger}\right)}$$

describing states from the Hilbert-Schmidt ensemble.

Qubit – two level quantum system

The master equations (5) for two level quantum system, the qubit, determine spectrum of SW kernel $\Delta^{(2)}$ uniquely:

with $\delta = \sqrt{(1+\nu)(5-3\nu)}$ and $\nu \in (-1, -\frac{1}{3})$. The edge points $\nu = -1$, $\nu = -\frac{1}{3}$ represent two degenerate kernels

spec (

while point $\nu = (1 - \sqrt{5})/2$ corresponds to a singular kernel spec $\left(\Delta_{\text{sing}}^{(3)}\right) = 1/2 \left\{ 1 + \sqrt{5}, 0, 1 - \sqrt{5} \right\}$.

Quatrit – four level quantum system

¹Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia ²A. Razmadze Mathematical Institute, Iv.Javakhishvili Tbilisi State University, Tbilisi, Georgia ³Institute of Quantum Physics and Engineering Technologies, Georgian Technical University, Tbilisi, Georgia ⁴Theoretical Physics Department, Faculty of Physics, Sofia University "St Kliment Ohridski", Sofia, Bulgaria

spec $(\Delta^{(2)}) = 1/2 \{ (1+\sqrt{3}), (1-\sqrt{3}) \}$. The states WFs of which are negative, lie outside the Bloch ball of radius $r_*(2) = 1/\sqrt{3}$. The "negativity probability" of qubit from HSE is $\mathcal{P}^{(-)}(2) = 0.115$.

Qutrit – three level quantum system

For a 3-level system there is 1-parameter family of SW kernels

spec
$$\left(\Delta^{(3)}(\nu)\right) = 1/2 \left\{1 - \nu + \delta, 1 - \nu - \delta, 2\nu\right\}$$

$$\Delta^{(3)}(-1) = \{1, 1, -1\}, \quad \operatorname{spec}\left(\Delta^{(3)}(-\frac{1}{3})\right) = \frac{1}{3}\{5, -1, -1\}.$$

Figure 1: The moduli space of qutrit represented by arc of a unit circle. The angle $\zeta \in [0, \pi/3]$ is related to the parameter ν in (6) labeling unitary nonequivalent WFs, $\nu = \frac{1}{3} - \frac{4}{3}\cos(\zeta)$.

The distribution of WF negativity $\mathcal{P}^{(-)}(\xi)$ with respect to the qutrit Bloch radius ξ for three different SW kernels is depicted in the Fig. 2; two degenerate and one singular ones. The "negativity probability" of qutrit WF as the function of moduli parameter $\zeta = \arccos(\frac{1-3\nu}{4})$ for generic kernel is depicted in the Fig. 3.

Figure 3: Negativity probability of HSE qutrit WF as function of moduli parameter ν .

The master equations (5) for a quatrit determine 2-parameter family of SW kernels. The spectrum of $\Delta^{(4)}(\nu_1, \nu_2)$ is determined by points on a unit 2-sphere, $\mu_3^2(\boldsymbol{\nu}) + \mu_8^2(\boldsymbol{\nu}) + \mu_{15}^2(\boldsymbol{\nu}) = 1$ satisfying inequalities:

$$\mu_3 \ge 0, \quad \mu_8 \ge \frac{\mu_3}{\sqrt{3}}, \quad \mu_{15} \ge \frac{\mu_8}{\sqrt{2}}.$$

Constraints (8) define the moduli space of quatrit SW kernel as one out of 24 possible spherical triangles which tessellate a unit sphere and the angles of which are $(\pi/2, \pi/3, \pi/3)$. Such a triangle is known as the Möbius Triangle with tetrahedral symmetry (Fig. 4).

Multilevel quantum system

The results of our studies of WF negativity with maximal singularity SW kernels, i.e. kernels spectrum of which have N - 2 vanishing eigenvalues, are given in the (Fig. 5).

Conclusions

References

- York, 1931

Figure 4: Demonstration of the distribution of WF negatvity probability over the quatrit moduli space represented by the Möbius spherical triangle (2,3,3)on a unit sphere. The colorbar identifies colors with the range of WF negatvity probability and the SW kernels with a degenerate spectrum like $\pi_1 > \pi_2 =$ $\pi_3 > \pi_4$ are marked by symbol (12|34) following V.I.Arnold's notation.

Figure 5: The negativity probability of WF for N-level system with Hilbert-Schmidt states calculated with the maximally singular SW kernel. With growing number of levels $N \rightarrow \infty$, the negativity probability tends to the value $\mathcal{P}^{(-)}(\infty) = 0.158655$.

1. The "master equations" for SW kernel $\Delta(\Omega)$ are derived; 2. Ambiguity in the solution to "master equations" is identified and the moduli space of the WF is determined;

3. Probabilistic characteristics of WF negativity are presented.

[1] E.P.Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749-759, 1932

[2] C.Brif and A.Mann, Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Liegroup symmetries, Phys.Rev.A59, 971, 1999

[3] A.Khvedelidze and V.Abgaryan, On the family of Wigner functions for N-level quantum system, arXiv: https://arxiv.org/abs/1708.05981

[4] H.Weyl, The theory of groups and quantum mechanics, Dover, New

[5] R.L.Stratonovich, On distributions in representation space, Soviet Physics JETP 4, 891-898, 1957