Neutron Stars Mass estimations from Cooling Evolution

Hovik Grigorian

JINR LIT (Dubna), Yerevan State University, AANL CP&IT (Yeravan, Armenia)

IT School – 2023 17 October Dubna, Russia

my co-authors: D.Blaschke, D.Voskresensky, A. Ayriyan E. Kolomeitsev, K. Maslov,

Simulation of Cooling Evolution of Neutron Stars

- Motivation
- Neutron Stars structure
- Neutron Stars cooling problem
- Results for NS cooling
- Mass extraction

H. Grigorian, D. N. Voskresensky and D. Blaschke Eur. Phys. J. A **52: 67 (2016).**

Phase Diagramm & Cooling Simulation

Structure Of Hybrid Star

Static neutron star mass and radius

The structure and global properties of compact stars are obtained by solving the Tolman-Oppenheimer-Volkoff (TOV) equations^{1,2}:

$$\begin{cases} \frac{dP(r)}{dr} = -\frac{GM(r)\varepsilon(r)}{r^2} \frac{\left(1 + \frac{P(r)}{\varepsilon(r)}\right)\left(1 + \frac{4\pi r^3 P(r)}{M(r)}\right)}{\left(1 - \frac{2GM(r)}{r}\right)} \\ \frac{dM(r)}{dr} = 4\pi r^2 \varepsilon(r); \\ \frac{dN_B(r)}{dr} = 4\pi r^2 \left(1 - \frac{2GM(r)}{r}\right)^{-1/2} n(r). \end{cases}$$

¹R. C. Tolman, Phys. Rev. **55**, 364 (1939). ²J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. **55**, 374 (1939).

Stability of stars HDD, DD2 & DDvex-NJL EoS models

Different Configurations with the same NS mass

Modern MR Data and Models

Surface Temperature & Age Data

Cooling Mechanism

$$\frac{dU}{dt} = \sum_{i} C_{i} \frac{dT}{dt} = -\varepsilon_{\gamma} - \sum_{j} \varepsilon_{\nu}^{j}$$

Cooling Processes

- $n \rightarrow p + e + \bar{\nu}_e$ ➤ Direct Urca:
- ➤ Modified Urca:

$$n + n \rightarrow n + p + e + \bar{\nu}_e$$

Photons: $\rightarrow \gamma$

▶ Bremsstrahlung: $n + n \rightarrow n + n + \nu + \overline{\nu}$

Cooling Evolution

The energy flux per unit time I(r) through a spherical slice at distance r from the center is:

$$l(r) = -4\pi r^2 k(r) \frac{\partial (Te^{\Phi})}{\partial r} e^{-\Phi} \sqrt{1 - \frac{2M}{r}}.$$

The equations for energy balance and thermal energy transport are:

$$\begin{split} \frac{\partial}{\partial N_B}(le^{2\Phi}) &= -\frac{1}{n}(\epsilon_{\nu}e^{2\Phi} + c_V\frac{\partial}{\partial t}(Te^{\Phi}))\\ \frac{\partial}{\partial N_B}(Te^{\Phi}) &= -\frac{1}{k}\frac{le^{\Phi}}{16\pi^2 r^4 n} \end{split}$$

where n = n(r) is the baryon number density, NB = NB(r) is the total baryon number in the sphere with radius r $\partial N_B = 2M_{eq} \frac{2M_{eq}}{2}$

$$\frac{\partial N_B}{\partial r} = 4\pi r^2 n (1 - \frac{2M}{r})^{-1/2}$$

F.Weber: Pulsars as Astro. Labs ... (1999);

D. Blaschke Grigorian, Voskresensky, A& A 368 (2001)561.

Neutrino emissivities in quark matter:

•Quark direct Urca (QDU) the most efficient processes

 $\begin{aligned} d &\to u + e + \bar{\nu} \text{ and } u + e \to d + \nu \\ \epsilon_{\nu}^{\text{QDU}} &\simeq 9.4 \times 10^{26} \alpha_s u Y_e^{1/3} \zeta_{\text{QDU}} T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}, \end{aligned}$

Compression n/no \simeq 2 , strong coupling αs \approx 1

• Quark Modified Urca (QMU) and Quark Bremsstrahlung

 $\begin{array}{l} d+q \to u+q+e+\bar{\nu} \text{ and } q_1+q_2 \to q_1+q_2+\nu+\bar{\nu} \\ \epsilon_{\nu}^{\rm QMU} \sim \epsilon_{\nu}^{\rm QB} \simeq 9.0 \times 10^{19} \zeta_{\rm QMU} \ T_9^8 \ {\rm erg \ cm^{-3} \ s^{-1}}. \end{array}$

Suppression due to the pairing

QDU : $\zeta_{\text{QDU}} \sim \exp(-\Delta_q/T)$ **QMU** and **QB** : $\zeta_{\text{QMU}} \sim \exp(-2\Delta_q/T)$ for $T < T_{\text{crit},q} \simeq 0.57 \Delta_q$

• Enhanced cooling due to the pairing • $e+e \rightarrow e+e+\nu + \bar{\nu}$ (becomes important for $\Delta_q/T >> 1$) $\epsilon_{\nu}^{ee} = 2.8 \times 10^{12} Y_e^{1/3} u^{1/3} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}$,

Quark PBF

Neutrino emissivities in hadronic matter:

•Direct Urca (DU) the most efficient processes

 $\epsilon_{DU} = M_{DU} * (m_p^*)(m_n^*) * \Gamma_{wN}^2 * (n_e)^{1/3} (T_9)^6 * R_D;$ $M_{DU} = 4 \times 10^{27} \ erg/s/cm^3$

Modified Urca (MU) and Bremsstrahlung

$$\epsilon_{MUp} = F_M * M_p * (m_p)^3 (m_n^*) (T_9)^8 (n_e)^{1/3} * R_{MUp} (v_n, v_p);$$

 $\epsilon_{nnBS} = P_{nnBS} * R_{BS}^{nn}(v_n) * \Gamma_w^2 \Gamma_s^4(n_b)^{4/3} (T_9)^8 (m_n^*)^4 / (\omega)^3;$

1 700)

• Suppression due to the pairing

$$v_N = \Delta_N(T)/T = \sqrt{1 - \tau_N} \left(1.456 - \frac{0.157}{\sqrt{\tau_N}} + \frac{1.766}{\tau_N} \right)$$

$$\begin{aligned} \epsilon_{\nu}^{\text{NPBF}} &= 6.6 \times 10^{28} (m_n^*/m_n) (\Delta_n(T)/\text{MeV})^7 \ u^{1/3} \\ &\times \xi \ I(\Delta_n(T)/T) \ \text{erg cm}^{-3}\text{s}^{-1}, \\ \epsilon_{\nu}^{\text{PPBF}} &= 0.8 \times 10^{28} (m_p^*/m_p) (\Delta_p(T)/\text{MeV})^7 \ u^{2/3} \\ &\times I(\Delta_p(T)/T) \ \text{erg cm}^{-3}\text{s}^{-1}, \end{aligned}$$

Medium Effects In Cooling Of Neutron Stars

- Based on Fermi liquid theory (Landau (1956), Migdal (1967), Migdal et al. (1990))
- MMU insted of MU

 Main regulator in Minimal Cooling

Medium Effects In Cooling Of Neutron Stars

MKVORHp - Gap models

Crust Model

Time dependence of the light element contents in the crust

 $\Delta M_{\rm L}(t) = e^{-t/\tau} \Delta M_{\rm L}(0)$

Blaschke, Grigorian, Voskresensky, A& A 368 (2001)561.

Page,Lattimer,Prakash & Steiner, Astrophys.J. 155,623 (2004)

Yakovlev, Levenfish, Potekhin, Gnedin & Chabrier , Astron. Astrophys , 417, 169 (2004)

Equations for Cooling Evolution

 $\begin{cases} \frac{\partial z(\tau,a)}{\partial \tau} = A(z,a) \frac{\partial L(\tau,a)}{\partial a} + B(z,a) \\ \frac{L(\tau,a)}{\partial \tau} = C(z,a) \frac{\partial z(\tau,a)}{\partial a} \\ \frac{\partial z(\tau,a)}{\partial a} = \log T(\tau,a) \end{cases}$ $L_{i\pm 1/2} = \pm \frac{C_{i} + C_{i\pm 1}}{2} \frac{Z_{i\pm 1} - Z_{i}}{\Delta a_{i-1/2(1\mp 1)}} \quad \frac{\partial L_{i}}{\partial a} = 2 \frac{L_{i+1/2} - L_{i-1/2}}{\Delta a_{i} + \Delta a_{i-1}}$

Finite difference scheme Time direction Z_i next Z_i-1 Z_i+1 step Z_i initial $\alpha_{i,j-1} Z_{i+1,j} + \beta_{i,j-1} Z_{i,j} + \gamma_{i,j-1} Z_{i-1,i} = \delta_{i,j-1}$

Finite difference scheme

 $\alpha_{i,j-1} Z_{i+1,j} + \beta_{i,j-1} Z_{i,j} + \gamma_{i,j-1} Z_{i-1,i} = \delta_{i,j-1}$

Program Algorithm

Model parameters - DD2

Menu_dd2_2017n.dat

Model Parametrs

The HOME directory is : .\Data\DD2\Configs-2 The EV UOTPUT directory : .\Data\DD2\17-12-2019\EV-DD2-pi-F4-o3-D Make EoS file : 0 Make new config. file : 0 Read full EoS from a file : 1 Read from : .\EoS\DD2 HG Hadronic EoS LWalecka (0) NLW (1) HDD (3) BSk20 (4): 3 Normal Shell : 0 Quark EoS SM model (1) Bag model (0) : 0 In case of SM GF (0) GL(1) NJL (2) : 0 with Ouark core : 1 without Mixed phase : 1 Superconducting Quark core : 1 Ouark Star : 0 Medium effects : 1 Pion condensate : 1 Crust Model (Yakovlev - Y Tsuruta - T our - G) : G Gaps in Hadrons Model (Yakovlev - Y AV18 - A Schwenk - U Armen-fit - F) : F for F-fit p-Gap 1-A0 2-BCLL 3-BS 4-CCDK 5-CCYms 6-CCYps 7-EEHO 8-EEHOr 9-T : 4 for F-fit n-Gap 2-AWP2 3 - AWP3 4 - CCDK 5 - CLS 6 - GIPSF 7 - MSH 8 - SCLBL 9 - SFB 0 - WAP : 0 XGaps in 2SC QModel constant 0 - 0 constant 0.1 MeV - 1 constant 0.05 MeV - 5 constant 0.03 MeV - 3 rising 0.03 + MeV - A incrising 0.03 - MeV - B constant 0.03 ++ MeV - C constant 0.03 -- MeV - D : C

Gap factors in HM Protons 1S0p : 1 Neutrons 1S0n : 1 Neutrons 3P2n : 0.1

End time point log10(t/yr) : 8

initial temperatur in MeV : 0.5

minimal value of log Temperature : 5.5

Print output files for LogN-LogS : 0

Print profiles for the time points : 0

Number of points : 7 0000000

The Masses [Mo] of Configurations to be Cooled

Menu dd2 2017n.dat

Number of points : 51 1.450 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

1.0 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Temperature in the Hybrid Star Interior

HDD - AV18 , Yak. ME nc = 3 n0

DD2 - EEHOr ME-nc=1.5,2.0,2.5n0

MKVOR Hyp - EEHOr, TN-FGA ME-nc=3.0n0

Cas A as an Hadronic Star

Cas A As An Hybrid Star

H. Grigorian, D. Blaschke, D.N. Voskresensky, Phys. Rev. C 71, 045801 (2005)

Possible internal structure of CasA

FIG. 2. Surface temperature as a function of NS age with masses $M \in [1, 1.7] M_{\odot}$ including self-annihilating conducting DM ($m_{\chi} = 0.1 \text{ GeV}$). χ emissivity has been enhanced a factor 5 larger than in Figure 1. LDM enhanced processes are active up to $\tau \sim 10^3$ yr, followed by a period of decline, and again for $t \gtrsim 1.5 \times 10^3$ yr. See text for details.

Results produced with use of MPI Technology

142 configurations hasbeen calculated in 0m49son the 142 processes.On 1 process it takes36m14s

Distribution of Evolution tracks via Temperature at given Time

Distribution of Evolution tracks via Temperature at given Time

Evolution tracks for different NS Masses

Weighting of Data point on the Temperature - Age Diagram

$w(T,t) = Exp\{(IogT-IogT_D)^2/\sigma_T + (Iog t - Iogt_D)^2/\sigma_t\}$

Conclusions

- All known cooling data including the Cas A rapid cooling consistently described by the "nuclear medium cooling" scenario
- Influence of stiffness on EoS and cooling can be balanced by the choice of corresponding gap model.
- Parallelization allowed to make the calculations for statistical analyses of models in reasonable time,
- it allows to estimate the masses of observed objects.
- The cases of existence of Hyperons and/or Quarks or Dark-Matter in high-mass stars could be discussed for extraction of stars masses.

Thank YOU!!!!!

Mixed Phase in Quark-Hadron Phase Transition

High Mass Twin CS

Mixed Phase in Quark-Hadron Phase Transition

High Mass Twin CS

Stability of stars HDD, DD2 & DDvex-NJL EoS mode

Different Configurations with the same NS mass

High Mass Twin CS

Different Configurations with the same NS mass

Calculation Time and efficiency

High Mass Twin CS

Different Configurations with the same NS mass

Cooling of Twin CS

Highmass Twins: QM SC Effect

Cooling of Neutron Stars admixed with Light Dark Matter

1

The DM capture rate can be approximated by

$$C_{\chi} \simeq 5.6 \times 10^{26} \left(\frac{M}{1.5 M_{\odot}}\right) \left(\frac{R}{14 \text{ km}}\right) \left(\frac{0.1 \text{GeV}}{m_{\chi}}\right) \left(\frac{\rho_{\chi}}{0.4 \frac{\text{GeV}}{\text{cm}^3}}\right) \text{s}^{-1}$$

the thermally-averaged self-annihilation rate $\langle \sigma v \rangle \sim 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}$,

$$C_a \simeq 2 \times 10^{-42} \left(\frac{0.1 \text{ GeV}}{m_{\chi}} \frac{2\rho_0}{\rho_N} \frac{T}{0.5 \text{ MeV}} \right)^{-3/2} \text{ s}^{-3/2}$$

NSs with masses $M \in [1, 1.9]M_{\odot}$ with the effect of selfannihilating LDM ($m_{\chi} = 0.1 \text{ GeV}$) originating a plateau or without LDM (continuous decline). Existing series of cooling