
Application of SD Best Practices
for the MPD Experiment

HNATIC Slavomir
MPD Software Development Team

OUTLINE

• Initial Status: Summer 2021 (Analysis)

• SD Best Practices

• Software vs R&D

• Software Project Dynamics

• Scaling and Complexity

• Unified Development Environment, Build & Software distribution system

• Design by Contract

• Future - MPD Data Lab

• Acceptance TDD

• Rapid Development

• MPD Software & Computing Ecosystem – The Big Picture

INITIAL STATUS (as of summer 2021)

Some of the most important findings:

• Total lack of staff

• No code influx control (reviews)

• Lack of tests

• Dead/untested code hanging all around the place, its maintenance taking away
from little worktime (man-hours) we have

• No OO code

• Codebase: one giant tightly coupled “global state/god class antipatterns” blob

• Cumbersome error-prone installation procedure

• Outdated website

• Lack of support & proper interaction with users, almost no user feedback

SD BEST PRACTICES

CORE INFLUENCES
- size / scaling
- structural complexity
- software defects
- uncertainty
- human variation
- synergy

SWEBOK v3 (2015, computer.org)
International ISO Standard

specifying the guide to

Software Engineering Body of Knowledge

SEPARATION OF CONCERNS
- thinking of software entity attributes in isolation, while keeping in mind, they’re

part of the whole
E.Dijkstra “On the role of scientific thought” (1974)

Technology Development =
Scientific Theory + Engineering Practice + Economy

ACTIVITIES FOCUS

“…the profession in which a knowledge of the mathematical
and natural sciences gained by study, experience, and practice is
applied with judgment to develop ways to utilize, economically,
the materials
and forces of nature for the benefit of mankind.”

-- Accreditation Board of Engineering & Technology
(www.abet.org)

R&D vs SOFTWARE
SOFTWARE ENGINEERINGR & D

PRODUCT DEVELOPMENT

• R&D valid concepts integrated
into whole

• Not in conflict with existing
development

• User/developer friendliness
• Extensible
• Maintainable
• Not requiring unmanageable

(geeky) support
• Compact, modular
• Follows SE principles & best

practices

CONCEPT VALIDITY EXPLORATION

• Key goal: Innovation

• Successful end justifies all
means

• Many of tested hypotheses
invalid

• Proper practices completely
out of focus to save time

• Prototypes of valid concepts
must be adapted to SE standards

CODE INFLUX CONTROL - CODEOWNERS

Code ownership within Gitlab
• forces assignment of responsibilities
• automatically checks for ownership of changed files
• emails owners asking them for a review

Effect
• code review by competent developers
• no arbitrary merges, trash code influx halted
• split between R&D and software code

“The art of programming (software development) is the art of organizing complexity, of

mastering multitude and avoiding its bastard chaos as effectively as possible.”

E. Dijkstra

SOFTWARE PROJECT DYNAMICS

COnstructive COst MOdel
(COCOMO II)
by Barry W. Boehm

• Most rigorous statistical analysis of software projects
using data from historic projects

• Results expressed in “effort adjustment factors”,
these describe software project dynamics,
used to gain insight to adjust the development strategy

• Requirements Analyst Capability factor 2 means
project with very low level analysis of requirements
would cost 2 times more effort than project with very
high level of requirements analysis

SCALING & COMPLEXITY REDUCTION

Backend
Build

Physics

Applied Software Measurement, C. Jones (2008)

SCALING: indicates action of cumulative forces pushing projects towards either success or failure

Some of the major reasons for dysfunctional scaling:

• Building on a weak foundation (overall SD setup, SoC - code restructuring,

decoupling)

• Lack of proper technical practices (testing, TDD, reviews, documentation,

OOA/OOD)

• Weak product & user level focus (release schedule, user feedback)

• Unused code hanging all over the place (code influx control, cleanup)

• Lack of direction (big picture view, milestones, prioritization)

CODE RESTRUCTURING & CLEANUP

Top Level
40 directories (1y ago) --> 14 directories (now)
• Unused detectors removal
• Old dysfunctional test system replaced
• Junk files removal (old scripts, configs, styling)
• Unused libraries removal
• Deployment system replaced & decoupled

state as of
summer
2021

BUILD & SOFTWARE DISTRIBUTION SYSTEM

• partial fork of alidist based on aliBuild created to have modular
MPDRoot

• builds packages from sources & keeps track of their dependencies

• If any of the build parameters, or package version changes, all
dependencies are rebuilt

NOW: NICADIST + CVMFS + TOOLBOX

CVMFS
• Server: stores built modules from nicadist
• Client: auto-installed on local machine, module loading & caching
TOOLBOX
• provides containerized clone of cluster environment on local PC

MPDROOT

source build
&

installation

FAIRSOFT & FAIRROOT

compile from source
(>20 packages)

OS DEPENDENCIES

(>100 packages)

C O N F I G U R A T I O N

BEFORE: OVERWHELMING COMPLEXITY (for every user)

1. Base dependencies (Fair suite,
MPDRoot) installation

2. FairSoft clone, build, install,
configure

3. FairRoot clone, build, install,
configure

4. MPDRoot, clone, build, install,
configure

Main Disadvantages

• Base dependencies (>100) different versions, potential source of
compatibility issues

• Source build taking many hours for each installation

• Complex procedure with many step-by-step commands, increasing
probability of mistake. If error was made usually procedure had to be
repeated from scratch

Buša J. Jr et al.: Unified Software Development and Analysis Environment
for MPD Experiment at NICA Collider, 2022

MPDROOT SETUP: USER PERSPECTIVE

INSTALLATION
https://mpdroot.jinr.ru/running-mpdroot-on-local-machine-using-cvmfs/

RELEASES
- release schedule: every 3 months
- “module add mpdroot” loads latest mpdroot release
- old releases can be loaded using specifier
- every release is coupled to its own dependency tree

ENVIRONMENT & DEPENDENCIES
- the environment & dependencies for the same mpdroot or

mpddev versions is identical
- no compatibility issues by definition

DESIGN BY CONTRACT
Software Development Stages

Requirements Architecture /
Design Construction Testing Integration

SOLUTION

From the very beginning do:

• Have interfaces
• Agree on interfaces
• Manage interfaces

• Interface control document

All realizations must implement
interfaces that are agreed upon

INTEGRATION

• Rarely mentioned and almost never planned for

• Reality: multiple independent streams of development

• Assumption: once everyone finishes it will all somehow
fit in and work

• Common result: turns out to be a major issue and
a significant risk factor of project failure/delay

• Last resort fixes: redesign at late project stages,
writing of unnecessary modules

Ensures software modularity, compactness
and TESTABILITY

TPC API
API – set of signatures that are exported and available to the users of

a library or framework to write their applications.

Key API design notes
• Lead to readable code
• Easy to learn and memorize
• Be complete & stable for proper development and maintenance

(be model based)
• Outlast its implementations (invariants)
• Be hard to misuse
• Be easy to extend
• Lead to backward compatibility

Source: SWEBOK (Software Engineering Body of Knowledge), 2015

API ImplementationTesting

List of the most important things done on MPDRoot

• Complexity reduction
- downscaling/separation:

build system, reconstruction/simulation engine, physics
- codebase cleanup

• Code quality
- code reviews, code influx control, formatting
- interfaces, API
- requirements modeling, acceptance TDD (in progress)

• Build redesign/unified environment

• Stable release schedule

• Support & Maintenance
- service desk, website, telegram support chat

OFFLINE SOFTWARE
The need to have modern data analysis tool

- development potential (the variety of possibilities to innovate) directly depends
on the properties of development environment

- integrating/modifying the best of latest technologies for the needs of MPD experiment
- clarity, user friendliness, ability to learn on-the-fly

MPD DATA LAB

CVMFS
QA

ENGINE
JUPYTER

LAB
TOOLBOXNICADIST

MPDROOT
MULTILEVEL

DIAGNOSTICS
INTERACTIVE
FRONTEND

QA ENGINE

QA ENGINE PROPERTIES

- pluggable/switchable reconstruction
modules

- QA modes to choose Diagnostics depth
- writing output in terms of MPD primitives

into multiple structured root files
for modular diagnostics and postprocessing

RUNRECO.C
(v23.09.23 release)

Options:
tpcClustering = ETpcClustering::MLEM

= ETpcClustering::FAST
= ETpcClustering::WAVELET (soon)

qaSetting = EQAMode::OFF
= EQAMode::BASIC
= EQAMode::TPCCLUSTERHITFINDER
= EQAMode::TRACKER (soon)

Upcoming:

tracker = ETracking::DEFAULT
= ETracking::ACTS

Output example: BaseQA_Fast.root, QA_TpcClusterHitFinder_Fast.root
Settings: EQAMode::TPCCLUSTERHITFINDER, ETpcClustering::FAST

REQUIREMENTS: ACCEPTANCE TDD

Tailored simulation
data file

Reconstructions with
different modules

Interactive multilevel
module comparison

Input modified algo
formula & reprocess

Try the change in main C++ codebase
inspect all QA’s for acceptance

QA / ATDD ENVIRONMENT

CLUSTERHITFINDER COMPARISON

• Mlem

• Fast

ABSTRACTION LEVELS

• Top …………..bench….…..Reconstruction

• Middle…..component….ClusterHitFinder

• Bottom ..…….units……....Clustering, Topology, Hit extraction

QA / ACCEPTANCE TDD PARADIGM
- QA overall functional: tools for the analysis,

diagnostics & improvement of the process of
reconstruction

- critical for overall project success
- QA plots = requirements written in precise test

case language

Interactive workflow example

• Jupyter-Lab with JSRoot

• Custom code injection

• Cell structure with reprocess option

• Graphical output customized on demand

• Algo tuning to real experiment data

COMPARISON BENCHMARK
- Complex systems: many unknown

factors/variables/nonlinearities
- truth best uncovered by comparison of quality

properties of the objects of the same type
(standard types defined in interfaces)

DIAGNOSTICS & RAPID DEVELOPMENT

EXAMPLE: DISCONNECTED TRACKS RETRIEVAL

- to be then used to write, test and evaluate algorithm
connecting disconnected tracks

- because of the considerable technical simplification, this
work can be outsourced to juniors

map <int, vector<int>> MCTracksFromTpcTracks(int event);

MC trackID TPC tracks

RAPID DEVELOPMENT

• Prototyping method – 15 minutes

• Integrating properly into main codebase – half a day !

THE BIG PICTURE

MPD assembly

TPC installation: Oct/Nov 2024

Commissioning: Jan/Feb 2025

ONLINE EVENT
DISPLAY

- experiment
visualization

- slow control

DETECTOR
CALIBRATION

- alignment
- noise level
- digitalization

delay

DATA STORAGE
& RETRIEVAL

MPDRoot

ANALYSIS RECONSTRUCTIONSIMULATION

Mass Production

PWG REQUESTS
HANDLING

DIRAC
INTERWARE

Computing Infrastructure
(MICC & friends)

- supercomputer
- clusters
- storage systems

CVMFS
- software distribution

NICADIST
- separate build system
- dependencies handling

Project Management &
Support/User Interaction

GITLAB
- codebase
- CI
- testing

SUPPORT
- helpdesk
- telegram

channel

WEBSITE
- howtos
- docs
- general info

MPD DATA LAB

TDD
ENVIRONMENT

- jupyter-lab
- jsroot
- container

QA
- engine
- gallery

TOOLBOX
- Unified environment

Thank You !

MPD Software Development & Computing Team

Rogachevsky O. …………………………………………………….... Coordinator

Krylov V., Krylov A. ………….…………………………………… Online MPD Event Display

Moshkin A., Pelevanyuk I. ………………………….. Mass Production

Bychkov A. …………………………………………………………….……… Detector Simulation

Kuzmin V. …………………………………………………………………….. Detector Alignment

Podgainy D., Zuev M.………………………………………... Supercomputing

Alexandrov E., Alexandrov I. ………………..…. Databases

Balashov N. ……………………………………………………..………… Gitlab Support

Belyakov D. …………………..…. Network Infrastructure

Belecky P., Kamkin A. …………………………..……..….. Acts Tracker

Busa J. ……………………………………………………………………………… Build System

Hnatic S. ………………………….………………………………………….… Architecture

