

11th Collaboration Meeting of the BM@N Experiment at the NICA Facility

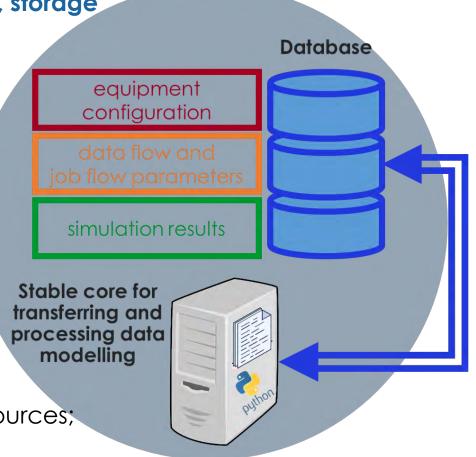
Digital Twin of BM@N computing infrastructure for data production

D. PRIAKHINA

- V. KORENKOV
- V. TROFIMOV
- K. GERTSENBERGER

30.11.2023

Modelling program

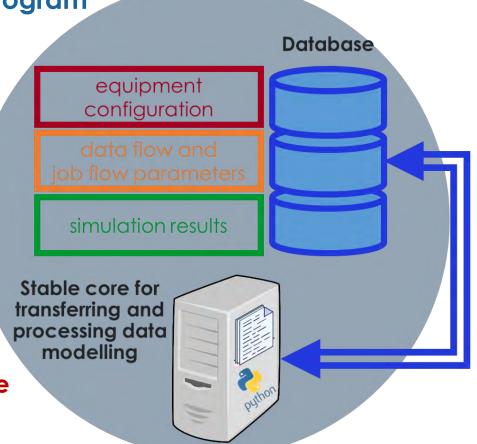

2

This work is supported by JINR grant for young scientists No. 23-602-03.

Simulation of distributed data acquisition, storage and processing systems

- Finding out how the data storage and processing system will work with the available computing power.
- Calculating the load on computing farms and communication links with the specified parameters of data flows and jobs flows.
- Modelling takes into account the probabilities of events in the system:

changing the rate of data generation;
changing the number of allocated resources;
equipment failure & recovery times.


Completed works (10th BM@N meeting)

Verification of the modelling program

 Modelling the BM@N Computing Infrastructure with parameters of equipment, data flows and jobs flows based on Run 8 mass production.
 Comparison of modelling results with results of BM@N Mass Data Production on distributed infrastructure for Run 8 using DIRAC.

Thanks to Igor Pelevanyuk

The verification results proved the correct and accurate of the modelling program!

30.11.2023

Digital twin (DT)

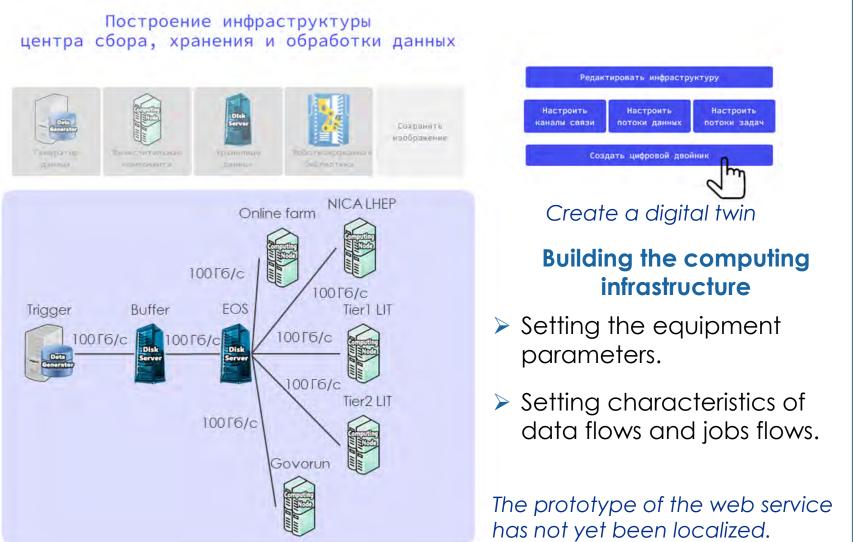
Real-time operation throughout the entire computing infrastructure life cycle.

COMPUTER MODEL

<u>Main</u> <u>component:</u> **developed modelling program**

30.11.2023

INPUT DATA


- Architecture and hardware parameters of computing infrastructure.
- Characteristics of data flows and jobs flows.

FUNCTIONAL PURPOSE

- > Designing of computing infrastructure.
- Analysis of the efficiency and reliability of computing infrastructure.
- Testing scaling scenarios based on data flows and jobs flows requirements.
- Assessment of the required amount of resources for specific tasks.
- Checking jobs flows management strategies.

Software complex for creating digital twins (prototype)

30.11.2023

Software complex for creating digital twins (prototype)

Информация об эксперименте

Дата создания: 7 февраля 2023 г. 10:36

Название эксперимента

Test 1

Описание эксперимента

Поиск оптимального количества ресурсов для хранения данных

Параметры моделирования

- Продолжительность работы моделируемой инфраструктуры 800 ч.
- Ускорение процесса моделирования в 1000 раз.

Параметры логирования

- Объекты моделируемой инфраструктуры
 - Хранилища данных
 - Вычислительные компоненты
 - Каналы связи
- События
 - 🖌 Генерация данных
 - 🖌 Потери данных
 - 🗹 🛛 Работа с файлами
 - Генерация, запуск, выполнение задач

Посмотреть результаты

Выбрать другой эксперимент

	Хранилища даннных	*****************	
Название	Описание	Объем (ТБ)	
trigger	Trigger BM@N	10000,0	
buffer	Data receptipon buffer	5400,0	
eoslhep	Main storage LHEP	1000,0	
eoslit	Main storage LIT	1000,0	
dcach	pp	1000,0	

Базовая конфигурация

Вычислительные компоненты				
Название	Описание	Количество ядер		
t2lit	LIT T2 farm	500		

ncxlhep	LHEP main farm	1200
super	Govorun	190

Название	Описание	Пропускная способность (Гб/с)	
raw0	trigger – buffer	100,0	
rawl	buffer - lhep	10,0	
raw2	buffer - lit	10,0	
compute0	lhep - farm lhep	10,0	
computel	lit - Govorun	10,0	
compute2	lit - farm lit	10,0	
dataeosLhepLit	eoslhep - eoslit	10,0	
dataeosLitLhep	eoslit - eoslhep	10,0	

Starting the digital twin

N2	Статус	Дата обновления			
16	NEW	9 марта 2023 г.	Просмотр	Запуск	Результаты
		14:52	mpocasorp	comych	coynoraru
		10 марта	-	-	1
15	DONE	2023 г. 10:18	Просмотр	Запуск	Результаты
Si	mul	tane	ous r	un o	of all 🔪
		tane			
		tane icatio			

Добавить модификацию

Software complex for creating digital twins (prototype)

Available for viewing:

- data storage load volume;
- using cores on computing components;

- Ioad on communication links;
- job queues, the number of completed jobs;
- distribution of files in storages.

Task

Comparison of different computing infrastructure configurations for data processing.

Data flows

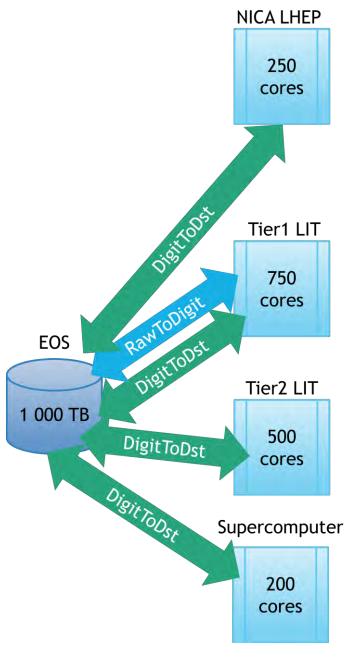
Experimental data 645 x 10⁶ events (25 800 raw files)

1 raw file = 15 GB (25 000 events) 1 digit file \approx 870 MB 1 dst file \approx 2 000 MB Simulation data 30 x 10⁶ sim-events (60 000 gen files)

1 gen file = 4 MB (500 sim-events) 1 sim file \approx 300 MB 1 dst (sim) file \approx 300 MB

Data processing stages

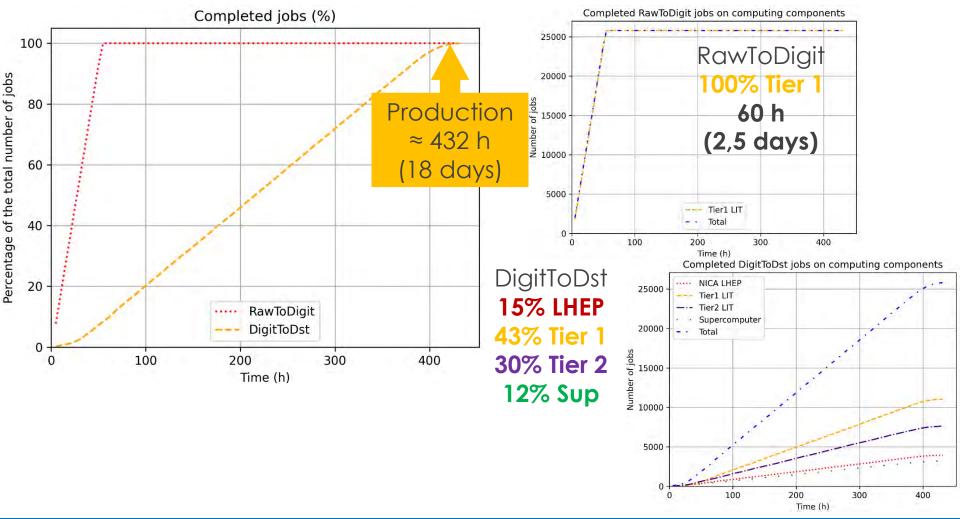
Experimental data


- Conversion of raw experimental data RawToDigit job ≈ 2 500 seconds (1 event ≈ 0.1 sec)
- Reconstruction of experimental data DigitToDst job ≈ 86 400 seconds (1 event ≈ 3 sec)

Simulation data

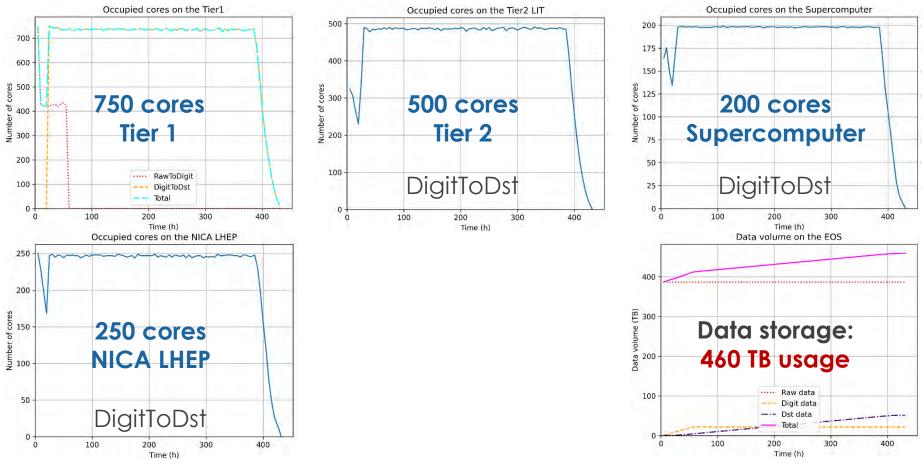
- Simulation GenToSim job ≈ 5 400 seconds (1 even ≈ 10 sec)
- 2. Reconstruction of simulation data SimToDst job \approx 5 400 seconds (1 event \approx 10 sec)

Variant 1. Current computing infrastructure

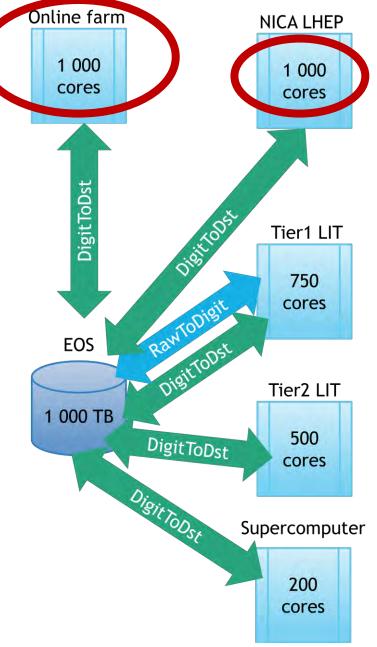

- Processing 645 x 10⁶ experimental events (25 800 raw files) to reconstruction data.
 - Conversion of raw experimental data RawToDigit job ≈ 2 500 seconds (1 event ≈ 0.1 sec)
 - Reconstruction of experimental data DigitToDst job ≈ 86 400 seconds (1 event ≈ 3 sec)
 - 1 raw file = 15 GB (25 000 events) 1 digit file \approx 870 MB
 - 1 dst file ≈ 2000 MB

Results 1 Completed jobs

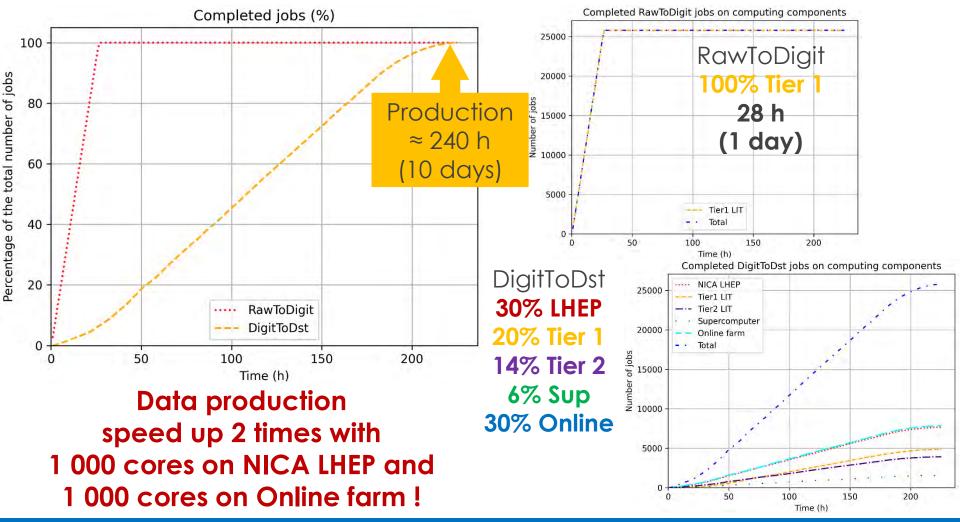
Processing experimental data


10

Results 1 Computing resources


11

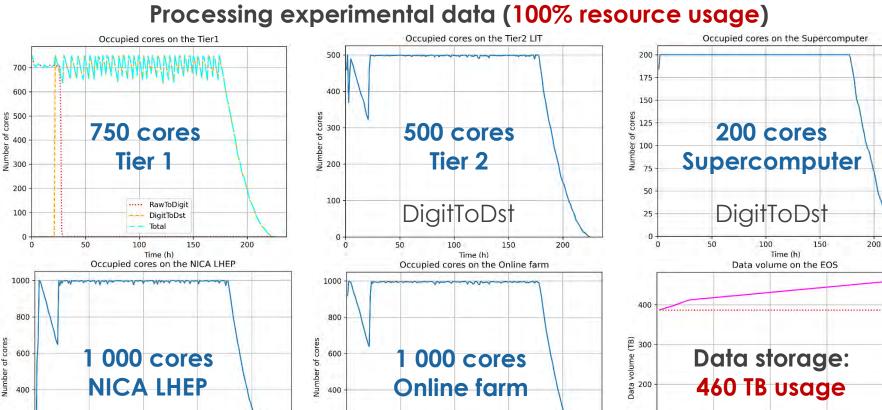
Processing experimental data (100% resource usage)


Variant 2. Planned computing infrastructure

- Processing 645 x 10⁶ experimental events (25 800 raw files) to reconstruction data.
 - Conversion of raw experimental data RawToDigit job ≈ 2 500 seconds (1 event ≈ 0.1 sec)
 - Reconstruction of experimental data DigitToDst job ≈ 86 400 seconds (1 event ≈ 3 sec)
 - 1 raw file = 15 GB (25 000 events)
 - 1 digit file \approx 870 MB
 - 1 dst file ≈ 2000 MB

Results 2 Completed jobs

Processing experimental data



30.11.2023

11TH COLLABORATION MEETING OF THE BM@N EXPERIMENT AT THE NICA FACILITY

13

Results 2 Computing resources

DigitToDst

Time (h)

100

200

0 -

0

50

30.11.2023

DigitToDst

100

Time (h)

150

200

Number of cores

200

0

0

50

11TH COLLABORATION MEETING OF THE BM@N EXPERIMENT AT THE NICA FACILITY

150

200

300

400

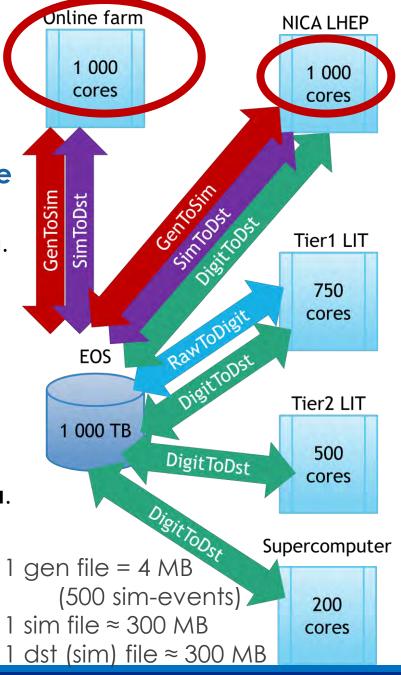
····· Raw data

--- Dst data

Time (h)

200

100

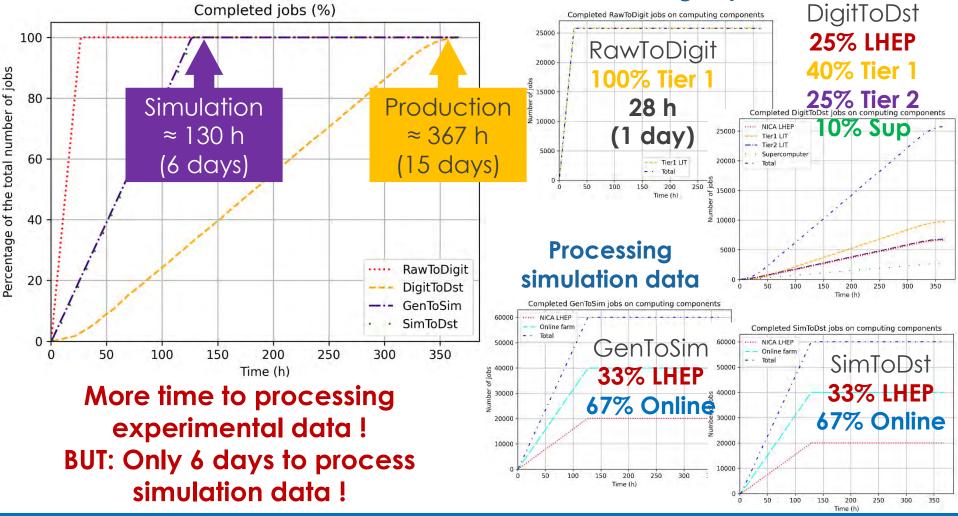

Digit data

100

0

Variant 3. Planned computing infrastructure

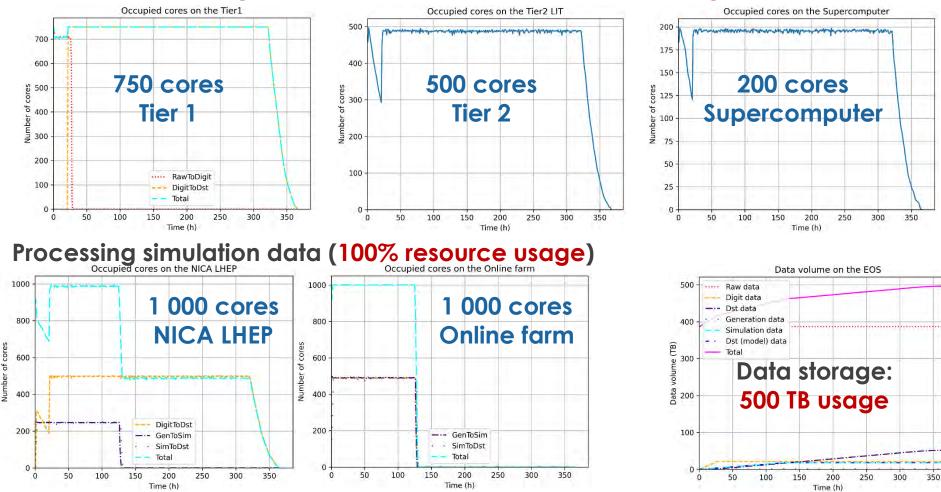
- Processing 645 x 10⁶ experimental events (25 800 raw files) to reconstruction data.
 - Conversion of raw experimental data RawToDigit job ≈ 2 500 seconds (1 event ≈ 0.1 sec)
 - Reconstruction of experimental data DigitToDst job ≈ 86 400 seconds (1 event ≈ 3 sec)
- Processing 30 x 10⁶ sim-events (60 000 gen files) to reconstruction data.
 - Simulation GenToSim job ≈ 5 400 seconds (1 even ≈ 10 sec)
 Reconstruction of simulation data SimToDst job ≈ 5 400 seconds (1 event ≈ 10 sec)



30.11.2023

Results Completed jobs

16


Processing experimental data

30.11.2023

Results Computing resources

Processing experimental data (100% resource usage)

30.11.2023

11TH COLLABORATION MEETING OF THE BM@N EXPERIMENT AT THE NICA FACILITY

17

Conclusions

Comparison of different computing infrastructure configurations for data processing

	Current	Planned (exp. data)	Planned (exp. + sim. data)
During of conversion of raw experimental data	60 h 2,5 days	28 h 1 day	28 h 1 day
During of processing experimental data to reconstruction data	432 h 18 days	240 h 10 days	367 h 15 days
During of processing simulation data to reconstruction data			130 h 6 days
Volume of data storage	460 TB	460 TB	500 TB

Should be:

- ✓ increase number of resources on NICA LHEP to 1 000 cores;
- ✓ add Online farm resources (1 000 cores).

Conclusions

Best configuration of planned computing infrastructure for data processing

- Processing experimental & model data to reconstruction data:
 - 645 x 10⁶ raw events (25 800 raw files) 367 h (15 days)
 - **30 x 10⁶ sim-events** (60 000 gen files) 130 h (6 days)
- > 100% usage of computing resources:
 - Tier1 LIT 750 cores (RawToDigit & DigitToDst jobs)
 - Tier2 LIT 500 cores (DigitToDst jobs)
 - **Supercomputer** 200 cores (DigitToDst jobs)
 - NICA LHEP 1000 cores (DigitToDst jobs & GenToSim & SimToDst jobs)
 - Online farm 1000 cores (GenToSim & SimToDst jobs)
- Data storage 500 TB.

30.11.2023

Conclusions

Future plans

Creation a digital twin to obtain predictive values for the amount of required resources in the future computing evolution of the BM@N experiment for 2024-2030.

Other suggestions are welcome...

11th Collaboration Meeting of the BM@N Experiment at the NICA Facility

Thank you for the attention!

D. PRIAKHINA

- V. KORENKOV
- V. TROFIMOV
- K. GERTSENBERGER

30.11.2023