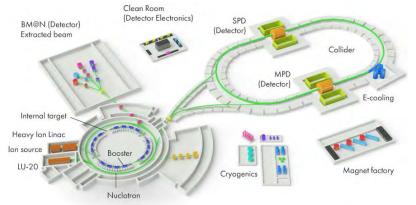


VI SPD Collaboration Meeting and Workshop on Information Technology in Natural Sciences

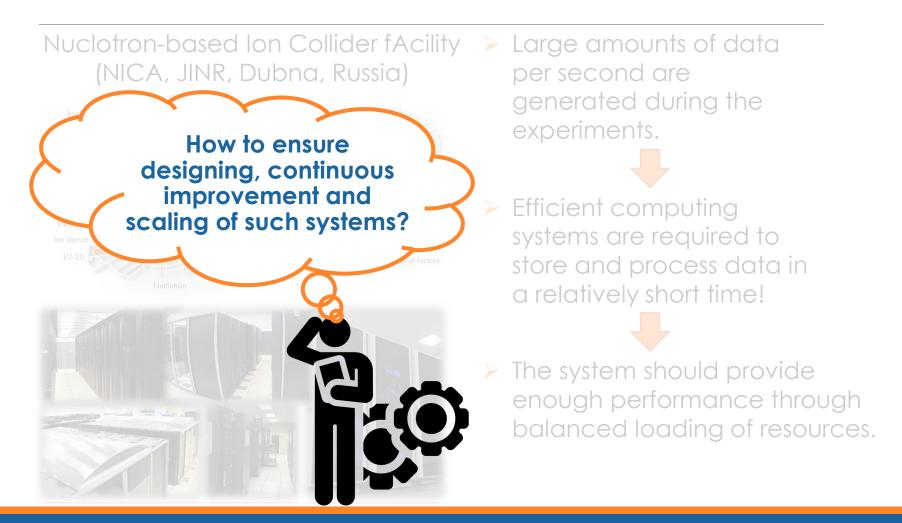
Digital Twin of SPD Online filter


MESHCHERYAKOV LABORATORY OF INFORMATION TECHNOLOGIES

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Introduction

Nuclotron-based Ion Collider fAcility (NICA, JINR, Dubna, Russia)


Large amounts of data per second are generated during the experiments.

Efficient computing systems are required to store and process data in a relatively short time!

 The system should provide enough performance through balanced loading of resources.

26.10.2023

Introduction

Introduction

- Modeling of complex computing systems.
- o Describes the system.
- Reflects the processes taking place in the system.
- Testing of the system with different variants of equipment parameters, data flows and jobs.

Priakhina D., Korenkov V. The relevance of creating a digital twin for managing distributed data acquisition, storage and processing centers (accepted in print)

26.10.2023

Digital twin (DT)

Real-time operation throughout the entire computing infrastructure life cycle.

COMPUTER MODEL

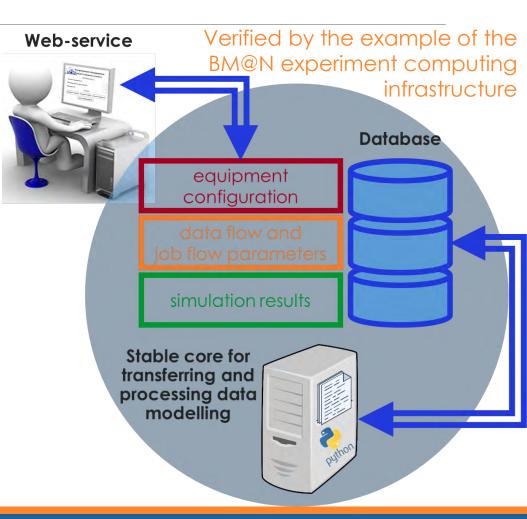
INPUT DATA
Architecture and hardware parameters of computing infrastructure.

26.10.2023

Characteristics of data flows and jobs flows.

FUNCTIONAL PURPOSE

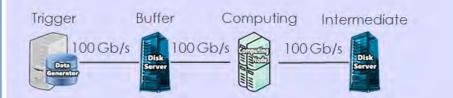
- > Designing of computing infrastructure.
- Analysis of the efficiency and reliability of computing infrastructure.
- Testing scaling scenarios based on data flows and jobs flows requirements.
- Assessment of the required amount of resources for specific tasks.
- Checking jobs flows management strategies.


Priakhina D., Korenkov V., Trofimov V. A method of constructing digital twins for solving problems of effective management and development of distributed data acquisition, storage and processing centers (accepted in print)

Software complex for creating digital twins

Modeling core

- Universal applicable for modeling computing infrastructure without changing the program code.
- Probabilistic distributions are taken into account when forming data flows, jobs flows, and criteria for the functioning of equipment.
- Used for design tasks, system scaling during operation, searching for problem areas when data flows and jobs flows change.


26.10.2023

6

Построение инфраструктуры центра сбора, хранения и обработки данных

Building the computing infrastructure

- Setting the equipment parameters.
- Setting characteristics of data flows and jobs flows.

The prototype of the web service has not yet been localized.

26.10.2023

Contract of the second	, чтобы добавить новый эксперимент для поиска оптимальной конфигурации оборуд * Обязательное поле для заполнения	
	Название эксперимента *	
	Test 1	
	Описание эксперимента	
	Поиск оптимального количества ресурсов для хранения данных	
	Параметры моделирования	
• Продолжительность р	аботы моделируемой инфраструктуры - 🛛 720 ч.	
• Ускорение процесса	моделирования в 100 раз.	
	Параметры логирования	
Выберите объект	ы и события, о которых необходимо сохранять информацию во время моделировани	a
• Объекты моделируемо	й инфраструктуры	
~	Хранилища данных	
	Вычислительные компоненты	
	Каналы связи	
• События		
~	Генерация данных	
~	Потери данных	
	Работа с файлами	
	Генерация, запуск, выполнение задач	
	Langeagen, Sangen, Geneentane Soper	_

Configuration of computing infrastructure scaling scenarios

Parameters for modeling:

experiment name;

> description;

duration of work;

speed up of modelling;

 objects and events for logging.

Информация об эксперименте

Дата создания: 7 февраля 2023 г. 10:36

Название эксперимента

Test 1

Описание эксперимента

Поиск оптимального количества ресурсов для хранения данных

Параметры моделирования

- Продолжительность работы моделируемой инфраструктуры 800 ч.
- Ускорение процесса моделирования в 1000 раз.

Параметры логирования

- Объекты моделируемой инфраструктуры
 - 🖌 Хранилища данных
 - Вычислительные компоненты
 - Каналы связи
- События
 - 🗹 🛛 Генерация данных
 - 🖌 Потери данных
 - 🗹 🛛 Работа с файлами
 - Генерация, запуск, выполнение задач

Посмотреть результаты

Выбрать другой эксперимент

Название	Описание	Объем (ТБ)
trigger	Trigger BM@N	10000,0
buffer	Data receptipon buffer	5400,0
eoslhep	Main storage LHEP	1000,0
eoslit	Main storage LIT	1000,0
dcach	pp	1000,0

Базовая конфигурация

	нислительные компо	ненты
Название	Описание	Количество ядер
+21i+	(ITT T2 form	500

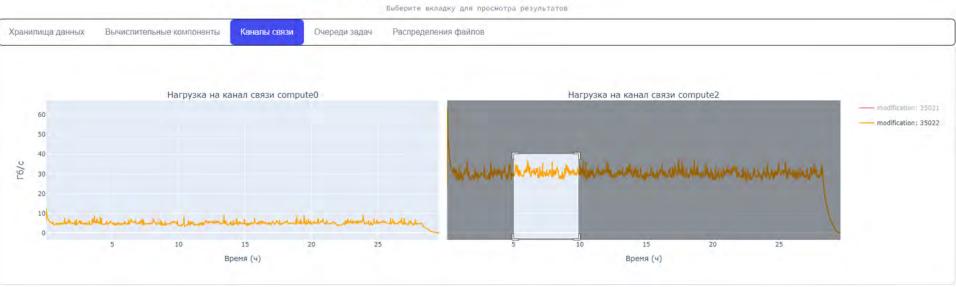
		Car ta totto	
1	ncxlhep	LHEP main farm	1200
1	super	Govorun	190

Название	Описание	Пропускная способность (Гб/с)
raw0	trigger – buffer	100,0
rawl	buffer - lhep	10,0
raw2	buffer - lit	10,0
compute0	lhep - farm lhep	10,0
computel	lit - Govorun	10,0
compute2	lit - farm lit	10,0
dataeosLhepLit	eoslhep - eoslit	10,0
dataeosLitLhep	eoslit - eoslhep	10,0

Starting the digital twin

	Статус	Дата обновления			
16	NEW	9 марта 2023 г. 14:52	Просмотр	Запуск	Результаты
15	DONE	10 марта 2023 г. 10:18	Просмотр	3any.ck	Результаты
C:	mul	tane			f

Добавить модификацию

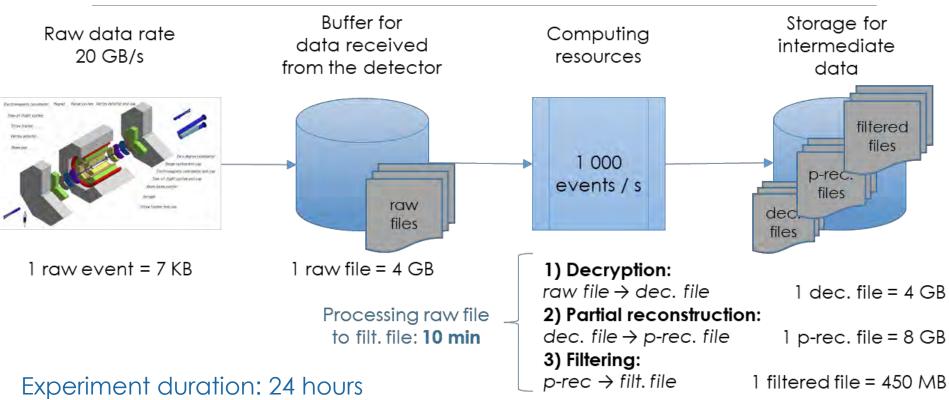


VI SPD COLLABORATION MEETING AND WORKSHOP ON INFORMATION TECHNOLOGY IN NATURAL SCIENCES

9

The digital twin results

Результаты эксперимента Test 1


Available for viewing:

26.10.2023

- > data storage load volume;
- using cores on computing components;

- Ioad on communication links;
- job queues, the number of completed jobs;
- distribution of files in storages.

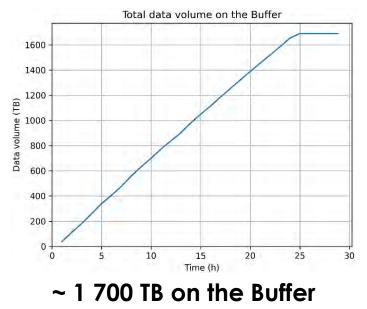
First experience

To calculate:

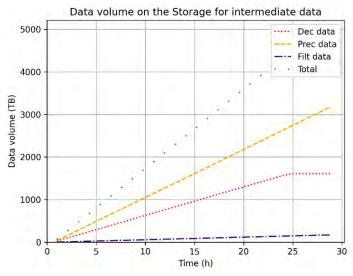
? network load;

data storage volumes;

26.10.2023

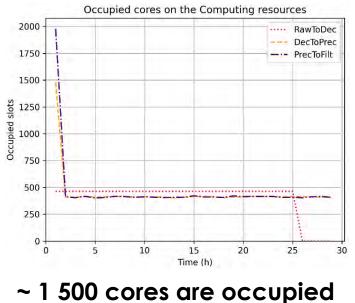

? load of computing resources etc.

| 1


First experience

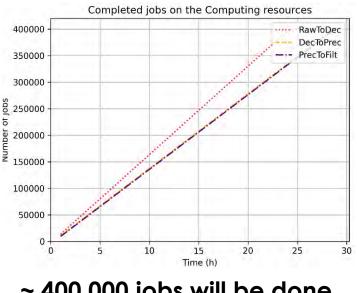
Results 1. Constant data generation

Data storages


26.10.2023

~ 5 000 TB on the Storage for intermediate data

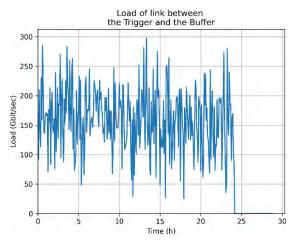
First experience


Results 1. Constant data generation

by jobs

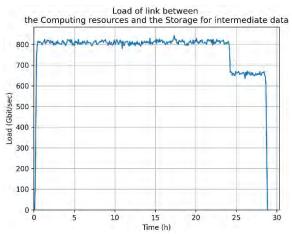
26.10.2023

Computing resources


~ 400 000 jobs will be done for 30 hours

First experience

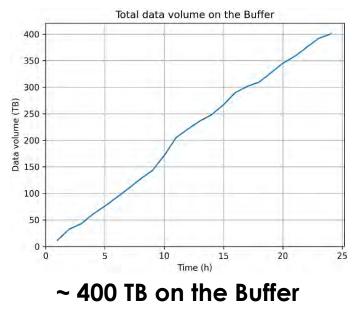
Results 1. Constant data generation



Load of link between

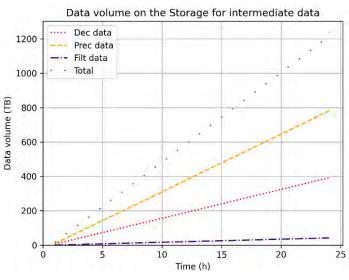
the Buffer and the Computing resources

~ 150 Gbit/sec between the Trigger and the Buffer ~ 150 Gbit/sec between the Buffer and the Computing resources



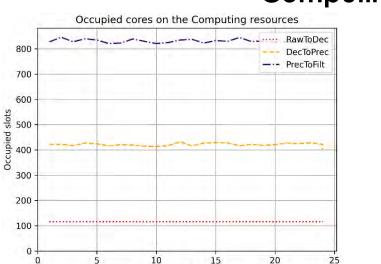
~ 800 Gbit/sec between the Computing resources and the Storage for intermediate data

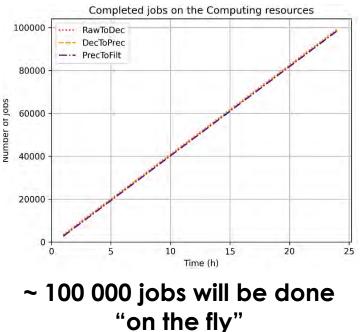
26.10.2023


First experience

Results 2. Data generation efficiency – 20%

26.10.2023

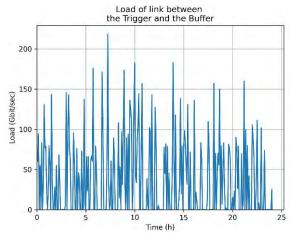

Data storages


~ 1 200 TB on the Storage for intermediate data

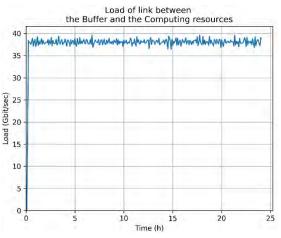
First experience

Results 2. Data generation efficiency – 20%

Computing resources

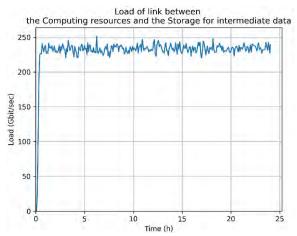


26.10.2023


Time (h)

First experience

Results 2. Data generation efficiency – 20%



Network

~ 40 Gbit/sec between the Buffer and the Computing resources

~ 250 Gbit/sec between the Computing resources and the Storage for intermediate data

26.10.2023

Conclusions

- Software complex can be used for create digital twins of SPD computing infrastructure.
- > Digital twin of SPD online filter can help calculate:
 - the required storages volumes;
 - time for data processing;
 - use of computing resources;
 - loading of communication links, etc.
- > Future plans:

26.10.2023

- adding the probabilities of various events in the system;
- o running digital twins for different scenarios of experiment.

in Natural Sciences

Thank you for the attention!

MESHCHERYAKOV LABORATORY OF INFORMATION TECHNOLOGIES

JOINT INSTITUTE FOR NUCLEAR RESEARCH

