NICA

Pilot Software in the SPD
Online Filter

Romanychev Leonid
JINR MLIT
romanychev@jinr.ru

JINR AYSS Conference “Alushta-2025”
11.06.2025

Introduction: Role of Pilot Applications

e Provide a flexible mechanism for execution of computational tasks.

e Widely used in high-throughput computing (HTC) systems for scientific data
processing (ex. LHC computing).

e |Issue: lack of unified abstraction and best practices leads to a variety of
implementations.

Core Components of Pilot Software

Pilot Manager: Launches
pilots (resource placeholders)

on computing resource;
Interfaces with SLURM,
HTCondor, etc.
Workload Manager:
Organizes task queue
(dependencies, priorities,
resource readiness).
Task Manager: Executes
tasks on pilot-reserved
resources; Manages task
lifecycle (launch, restart,
monitor, error handling).

Workload

Pilot System

Machine

Pilot Workload
Manager Manager

Pilot Provisioning

Resource Placeholder (i.e., pilot)

Task

i Manager

Task Execution

Task Dispatching

Functionality & Architecture

Functional Stages:

e Provisioning (Acquiring & deploying resources)
e Dispatching (Assigning tasks to pilots)
e Execution (Running tasks on resources)

Architectural Features:

e Multi-level scheduling
e Communication Models (Master-worker, Broker-oriented)
e Flexibility (integrates with various DCRs: clusters, grids, clouds)

Late Binding Mechanism

Definition:

Late binding is the process of assigning tasks to active pilots at the moment of
availability, unlike early binding, where tasks are tied to inactive pilots.

Benefits:

e Dynamic task allocation improves resource utilization efficiency.
e Reduces queue wait times, critical for high-performance systems.
e Enables high throughput (e.g., up to 1 million tasks per day for ATLAS).

DCR (Grid, Cloud, HPC, Workstations)

Container (Job, VM)

- Coaster
Sl JavaPyihon GoG System ‘Coaster Client (GoG API)
application

Coaster Service
| Providers || Data Proxy |

Pliot Provisioning

(Multi-level scheduling)

DIANE
Application
‘: Interface (CLI) I
Workload/Task
Submitter
Script
DCR (Local, EGIWLCG Grid)
Container (Job)
Pllot Provisioning|
(Multi-level scheduling)
Pllot (WorkerAgent)

Task Execution

Task Dispatching

[Apptcation |
l l Worker I

Pilot (Job Agent)
Tas! ution Task Dispatching
on (Multi-level scheduling,
Early/Late binding)
Resource
(core, memory)
Python Script, Skeleton, RADICAL-Pilot
SWIFT
w= Pilot-API l
Workload/ Task
Python Module
Pilot cu
DCR (workstation, HTC) Manager Manager
SAGA
Python
Container (Job)
Database :
Pilot Provisioning
(Multi-level
Pilot
Task Exocution | ORI Task Dispatching
s {Multi-level scheduling,
Early/Late binding)
Resourco
(core, memory)

Application HTCondor Glidein and GlideinWMS
: Interface (CLI) I
Workload/Task
vo
Frontend Schead
DCR (Local resource, OSG) WMS HTCondor
Collector Collector
Glidein
Negotiator
Container (Job) Factory s
Pilot Provuionlnd
(Multi-level scheduling)
Pilot (Glidein)
U
Task Execution Startd Task Dispatching
(Muilti-level scheduling,
Early/Late binding)
Resource
(core, memory) ‘
JDL/WEB job description, DIRAC
Python Script
Workload/Task

DCR (Grid, Cloud, HPC, Workstations)

Container (Job, VM)

Pilot Provisioning

(Multi-level scheduling)

Task Dispatching

Pilot (Job Agent)
Watchdog
Task Execution Job Wrapper
Resource
(core, memory)

(Multi-level scheduling,
Early/Late binding)

(Multi-level scheduling,

Earty/Late binding)
Resource
(core, memory)
PANDA
Appication
: Interface (Python API) I
Workload/Task
Grid Scheduler || PANDA Server
Task
DCR (Local resource, OSG) | AutoPilot | Bt
Data
Service
Container (Job)
Pliot Provisioning Broker
(Multi-level
Job
Dispatcher
Pilot
Task Execution | Aundod | Task Dispatching
(Multi-level scheduling,
Early/Late binding)
Resource

(core, memory)

SPD Online Filter Pilot Software

Workload Manager

System

Workload

Machine

Pilot System
Pilot Workload
Manager Manager

Pilot Provisioning

Resource Placeholder (i.e., pilot)

‘7 Manager [

Task Execution

Task

Task Dispatching

Machine

Pilot System

Daemon

Pilot Provisioning

Pilot

—

Job
Manager

Queue
(Job Dispatching)

Job Execution

SPD Online Filter Pilot Software

v v
JOb-EXECUtOF GPU queue CPU queue

~

Repository

hearbeat

status update

‘--

stage-in

stage-out

Pilot pipeline

Cancel/xiil

Start Pilot

|

Init logging

l

Reading config

l

Getting a message
from RabbitMQ

l

Validation

Starting new
process

JoB

|

hearbeats, statuses
and receiving
commands

KiLL

/I—

l

Completion of pilot

o) g the job

—

Customization script

Analyzing the result

Staging out the files

|

Sending signal

< status send

Ending the process

R |

“DAQ emulator”

Using SPD DAQ emulator, we’ve generated
50 files, each ~2Gb;

Input dataset has been registered with these
files;

Task has been processed (or 50 jobs);

The payload for Pilot is simple: compute the
MD5/BLAKE3 hash, as there is no actual
computation involved at this stage.;
Generation of one files takes around ~7 min,
using JINR Cloud VM: 12x 1-core Intel Xeon
E5-2650

Registration of the entire dataset: ~10 sec

Configuration file for SPD DAQ data generator
2023/03/01

#Data file name format: run-<run number>-<chunk
number>-<builder id>.spd
DataFileNameFormat = run-%06u-%05u-%02u.spd

#RND generator seed:
RandomSeed = 12345

#The size limit of the output data file in bytes:
DataFileSizelLimit = 2147483648

#debug mode for debuging front-end card. If it is 1
then generator will

#produce all data words (headers and trailers) even
if there are no hits,

#otherwise all empty data blocks are removing
DebugMode =0

#Source ID(s) of the clock modulue(s) for
measurement start of frame time:
FrameClockID = 1000, 1001

#Source ID(s) of the TDC module(s) for measurement
of the bunch crossing time:
BunchCrossingID = 1004

#Slice length in ns (must be less than smallest TDC
over-roll time (4.5 ms for RS)):
Slicelength = 10000

#Number of slices in a frame:
FrameLength - 100000 10

Conclusion

Unified task execution interface

Adaptability across platforms

Reduced overhead (scheduling & execution)
Scalability (to millions of concurrent tasks)

11

Thanks for your attention

12

