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Introduction: Role of Pilot Applications

e Provide a flexible mechanism for execution of computational tasks.

e Widely used in high-throughput computing (HTC) systems for scientific data
processing (ex. LHC computing).

e |Issue: lack of unified abstraction and best practices leads to a variety of
implementations.



Core Components of Pilot Software

Pilot Manager: Launches
pilots (resource placeholders)

on computing resource;
Interfaces with SLURM,
HTCondor, etc.
Workload Manager:
Organizes task queue
(dependencies, priorities,
resource readiness).
Task Manager: Executes
tasks on pilot-reserved
resources; Manages task
lifecycle (launch, restart,
monitor, error handling).
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Functionality & Architecture

Functional Stages:

e Provisioning (Acquiring & deploying resources)
e Dispatching (Assigning tasks to pilots)
e Execution (Running tasks on resources)

Architectural Features:

e Multi-level scheduling
e Communication Models (Master-worker, Broker-oriented)
e Flexibility (integrates with various DCRs: clusters, grids, clouds)



Late Binding Mechanism

Definition:

Late binding is the process of assigning tasks to active pilots at the moment of
availability, unlike early binding, where tasks are tied to inactive pilots.

Benefits:

e Dynamic task allocation improves resource utilization efficiency.
e Reduces queue wait times, critical for high-performance systems.
e Enables high throughput (e.g., up to 1 million tasks per day for ATLAS).
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SPD Online Filter Pilot Software
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SPD Online Filter Pilot Software

v v
JOb-EXECUtOF GPU queue CPU queue

~

Repository

hearbeat

status update

‘--

stage-in

stage-out




Pilot pipeline
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“DAQ emulator”

Using SPD DAQ emulator, we’ve generated
50 files, each ~2Gb;

Input dataset has been registered with these
files;

Task has been processed (or 50 jobs);

The payload for Pilot is simple: compute the
MD5/BLAKE3 hash, as there is no actual
computation involved at this stage.;
Generation of one files takes around ~7 min,
using JINR Cloud VM: 12x 1-core Intel Xeon
E5-2650

Registration of the entire dataset: ~10 sec

# Configuration file for SPD DAQ data generator
# 2023/03/01

#Data file name format: run-<run number>-<chunk
number>-<builder id>.spd
DataFileNameFormat = run-%06u-%05u-%02u.spd

#RND generator seed:
RandomSeed = 12345

#The size limit of the output data file in bytes:
DataFileSizelLimit = 2147483648

#debug mode for debuging front-end card. If it is 1
then generator will

#produce all data words (headers and trailers) even
if there are no hits,

#otherwise all empty data blocks are removing
DebugMode =0

#Source ID(s) of the clock modulue(s) for
measurement start of frame time:
FrameClockID = 1000, 1001

#Source ID(s) of the TDC module(s) for measurement
of the bunch crossing time:
BunchCrossingID = 1004

#Slice length in ns (must be less than smallest TDC
over-roll time (4.5 ms for RS)):
Slicelength = 10000

#Number of slices in a frame:
FrameLength - 100000 10



Conclusion

Unified task execution interface

Adaptability across platforms

Reduced overhead (scheduling & execution)
Scalability (to millions of concurrent tasks)
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Thanks for your attention
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