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Introduction

• Nuclear power plants, E ≈ 10-9 – 20.5 MeV
• Particle accelerators, E ≈ 10-9 – 103 MeV
• Cosmic radiation, E ≈ 10-9 – 104 MeV

Personal dosimeter0.025 eV - 20 MeV
BonnerMulti-sphereSpectrometer

https://atomtex.com/ http://dx.doi.org/10.5772/51274https://www.doza.ru

Radiation fields behind the protective shields of nuclear physics facilities (particle accelerators, nuclear reactors) are formed mainly
by neutrons of a wide energy spectrum.

Neutron energy range



Response functions of moderator spheres
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Martinkovic, J., and G. N. Timoshenko. Calculation of multisphere neutronspectrometer response functions in energy range up to 20 MeV. No. JINR-R--16-2005-105. Division of Radiation and Radiobiological Research, 2005.
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Emin = 10-8 MeV



• Direct task: to obtain “effective” readings of the Bonner spectrometer (BSS) based on the given spectra.• Inverse task: to obtain the initial spectra based on the measurements.

Direct and inverse problems of spectrum unfolding

Q1…QM
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M < SM < N
E1…ES

𝛷 =
𝑁

𝑖=1

𝐶𝑖 𝑃𝑖−1𝑄𝑗 ≈∑𝑆
𝑖=1𝐾 𝑗𝑖Φ(E 𝑖)∆𝐸,   𝑗 = 1,…,𝑀

C1…CN

∫𝐸max
𝐸min 𝐾1 𝐸 𝜑 𝐸 𝑑𝐸 = 𝑄1 + 𝜉,

⋮
∫𝐸max
𝐸min 𝐾𝑀 𝐸 𝜑 𝐸 𝑑𝐸 = 𝑄𝑀 + 𝜉,

 
• Qj is the BSS reading for the j-th sphere,• 𝜉 - error of measurement,• φ(E) - neutron spectrum,• Кj(E) is a response function of the detector to neutrons,• М is the number of spheres used,• The integration limits Emin and Emax.
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The Bonner multi-sphere spectrometer is used to measure neutron spectra in stationary fields to assessirradiation of personnel.

�̇� =
𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

𝜑 𝐸 ∙ℎ(𝐸)𝑑𝐸

�̇� – dose rate (�̇�eff_AP,�̇�eff_ISO, �̇�*(10), �̇�p(10,0°))
h(w) – corresponding conversion factor [pSv∙cm2] for monoenergetic particles in different irradiationgeometries, ICRP Publication 1161.

Dose estimation for spectrum
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https://dceg.cancer.gov/tools/radiation-dosimetry-tools/phantoms-library

1. Petoussi-Henss, Nina, et al. "ICRP Publication 116—the first ICRP/ICRU application of the male and female adult reference computational phantoms." Physics in Medicine & Biology 59.18 (2014): 5209.
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• Calculations on the multifunctional information and computing complex of the Joint Institute for Nuclear Research (JINR)Information Technology Laboratory.
• Deep learning (DL) framework: Mambular.
• Automated machine learning (AutoML) frameworks: Fedot, LightAutoML.
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ML method & implementation
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8 x GPU CUDA A100

1. http://hlit.jinr.ru/2. https://github.com/OpenTabular/DeepTabular3. https://github.com/aimclub/FEDOT4. https://github.com/sb-ai-lab/LightAutoML



Dataset

• Spectra from the literature (375 spectra) for testing
IAEA dataset2 (251 spectra) + 124 spectra from open access papers(manually digitized by our group).

1. Input features: numerical: 10 measurements.
2. Output target: Spectre values for 60 energy bins (10-9—6.3·102 MeV, log scale).
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1. Frascati Unfolding Interactive Tool, doi: 10.1016/J.NIMA.2007.07.0332. Compendium of Neutron Spectra and Detector Response for Radiation Protection Purposes: Technical Report Series. Vienna: IAEA, 2001. No. 403.3. Gómez-Ros J. M. et al. Results of the EURADOS international comparison exercise on neutron spectra unfolding in Bonner spheres spectrometry. Radiation Measurements 153 (2022):106755.
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• Synthetic based on FRUIT1 method (5·105 spectra) for training
1. Input features: numerical: 10 measurements.
2. Output target: Spectre values for 60 energy bins (10-9 - 6.3·102MeV, log scale).
3. 80%— training, 20%— validation.

Monte-Carlo simulation, regularization(Tikhonov, statistical, ...), Maximumentropy principle, Maximum likehood,Genetic, Iterative, Parametric,Bayesian, ...3



Synthetic dataset
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1. McGreivy J., Manfredi J.J., Siefman D. Data Augmentation for Neutron Spectrum Unfolding with NeuralNetworks. Journal of Nuclear Engineering 4( 1)): 77–95. 2023. (For neutron energy range from 0.001 eV to15.8 MeV)2. Frascati Unfolding Interactive Tool, doi: 10.1016/J.NIMA.2007.07.0333. Nico S., Snow W. M. Fundamental Neutron Physics. Annu. Rev. Nuc.Part. Sci., 55:27–69, 2005.
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• 𝜑𝑡ℎ — thermal (0.025 eV – 0.04 eV)
• 𝜑𝑒— epitermal (0.04 eV – 100 keV)
• 𝜑𝑓— fast (0.2 – 10 MeV)
• 𝜑ℎ𝑖— high-energy (> 10 MeV)

Fission: 𝑃𝑡ℎ,𝑃𝑒,𝑃𝑓,𝑏,𝛽′,𝛼,𝛽Pth,Pe,Pf,b,β′,α,βEvaporation: 𝑃𝑡ℎ,𝑃𝑒,𝑃𝑓,𝑏,𝛽′,𝑇𝑒𝑣Pth,Pe,Pf,b,β′,TevGaussian: 𝑃𝑡ℎ,𝑃𝑒,𝑃𝑓,𝑏,𝛽′,𝐸𝑚,𝜎Pth,Pe,Pf,b,β′,Em,σHigh Energy: 𝑃𝑡ℎ,𝑃𝑒,𝑃𝑓,𝑃ℎ𝑖,𝑏,𝛽′,𝑇𝑒𝑣,𝑇ℎ

The tunable parameters for each model are:
10-8 10-6 10-4 10-2 100 102 10 4 E, MeV

𝜑(E
)E
neu

tron
cm

-2
s-1

𝑃𝑡ℎ + 𝑃𝑒 +𝑃𝑓 +𝑃ℎ𝑖 = 1



IAEA dataset
• Database of 251 spectra.
• Spectra normalized to 1.
• The database may contain errors due to the use ofdifferent methods. For example, non-physicalwaves on the graph due to solution of the inverseproblem with choosed regularization parameter.

9
1. Compendium of Neutron Spectra and Detector Response for Radiation Protection Purposes: Technical Report Series. Vienna: IAEA, 2001. No. 403.
2. Aleinikov, V. E., et al. "Reference neutron fields for metrology of radiation monitoring." Radiation Protection Dosimetry 54.1 (1994): 57-59.
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Типы установок и количество спектров каждого типа
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E1…ESS = 60

10 Measurements
Advanced deep learning architecture for tabular data

2. Thielmann A. F., et al. "Mambular: Asequential model for tabular deep learning."arXiv preprint arXiv:2408.06291 (2024).
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| Name | Type | Params | Mode-------------------------------------------------------------------------------------------------------0 | loss_fct | MSELoss | 0 | train1 | estimator | Mambular | 315 K | train2 | estimator.embedding_layer | EmbeddingLayer | 12.8 K | train3 | estimator.mamba | Mamba | 302 K | train4 | estimator.tabular_head | MLPhead | 65 | train--------------------------------------------------------------------------------------------------------315 K Trainable params0 Non-trainable params315 K Total params1.261 Total estimated model params size (MB)69 Modules in train mode0 Modules in eval mode

Estimator

...
Mambular, TabM, ResNet,FTTransformer, MLP, SAINT,TabulaRNN, NDTF, NODE2...

60 TargetsFeatureTransformations
~105 - 106 parameters

min-max scaler,peicewise linear encoding(PLE)2, dimensions d = 20
D = 0, 2, 3, 5, 6, 8, 10, 12, 15, 18 inch

1.INTERNATIONAL ATOMICENERGY AGENCY, Compendiumof Neutron Spectra and DetectorResponses for RadiationProtection Purposes, TechnicalReports Series No. 403, IAEA,Vienna (2002)

Energy binsin logarithmic scalefrom 10-9 to 6.3∙102 MeV

6LiI(Eu) detectorGSF1



Типы установок и количество спектров каждого типа
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Gorishniy, Y., Rubachev, I., and Babenko, A. (2022). On embeddings for numerical features in tabular deep learning. Advances in Neural Information Processing Systems,35:24991–25004.

• Each numerical feature (x) is encoded with PLE before being passed through the linear layer for rescaling.
• Decision trees are used for detecting the bin boundaries, bt,
• Embeddings (et) are passed jointly through a stack of Mamba layers.

Feature transformations and processing in Mambular
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Tabular deep learning in Mambular framework
Model Description
Mambular A sequential model using Mamba blocks specifically designed for various tabular data tasks(arXiv:2408.06291).
TabM Batch Ensembling for a MLP(Gorishniy et al.).
MLP A classical Multi-Layer Perceptron (MLP) model for handling tabular data tasks (arXiv:2408.06291).
FTTransformer Feature Tokenizer + Transformer. A model leveraging transformer encoders for tabular data (Gorishniy etal.).
NODE Neural Oblivious Decision Ensembles (Popov et al.).
ResNet An adaptation of the ResNet architecture for tabular data applications (Gorishniy et al 2021).
TabTransformer A transformer-based model for tabular data, enhancing feature learning capabilities (Huang et al.).
MambaTab A tabular model using a Mamba-Block on a joint input representation. Not a sequential model.(arXiv:2401.08867).
TabulaRNN A Recurrent Neural Network for Tabular data (arXiv:2411.17207v).
MambAttention A combination between Mamba and Transformers (arXiv:2411.17207v1).
NDTF A neural decision forest using soft decision trees (Kontschieder et al.)
SAINT Improve neural networks via Row Attention and Contrastive Pre-Training (arXiv:2106.01342v1).
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https://arxiv.org/abs/2410.24210
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/2106.11959
https://arxiv.org/abs/1909.06312
https://arxiv.org/abs/2012.06678


Sufficiency of the training dataset
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Training datasetof 104 samples
Difference in effective dose rate estimationon predicted spectra

Training datasetof 5×105 samples

Dataset optimization

Learning rate = 10-4

Model OptimizationTraining and Validation Loss



Mambular results. Spectra comparison for 375 real cases
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Spectra №67 (soft field) Spectra №68 (hard field) Spectra №226

Spectra №0 Spectra №102 Spectra №83

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into the input data.



Mambular results. Spectra comparison for 375 real cases
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Pearson correlation Cosine similarity R2

Wasserstein distanceMSE MMDMaximum mean discrepancy

Coefficient of determination

Mean squared error



Mambular results. Dose assessment for 375 real cases
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The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into theinput data (measurements error = 5%).



TabM results. Spectra comparison for 375 real cases
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Spectra №67 (soft field) Spectra №68 (hard field) Spectra №226

Spectra №0 Spectra №102 Spectra №83

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into the input data.



TabM results. Spectra comparison for 375 real cases
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Pearson correlation Cosine similarity R2

Wasserstein distanceMSE MMDMaximum mean discrepancy

Coefficient of determination

Mean squared error



TabM results. Dose assessment for 375 real cases
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The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into theinput data (measurements error = 5%).



MLP results. Spectra comparison for 375 real cases
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Spectra №67 (soft field) Spectra №68 (hard field) Spectra №226

Spectra №0 Spectra №102 Spectra №83

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into the input data.



MLP results. Spectra comparison for 375 real cases
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Pearson correlation Cosine similarity R2

Wasserstein distanceMSE MMDMaximum mean discrepancy

Coefficient of determination

Mean squared error



MLP results. Dose assessment for 375 real cases
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The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into theinput data (measurements error = 5%).



FTTransformer results. Spectra comparison for 375 real cases
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Spectra №67 (soft field) Spectra №68 (hard field) Spectra №226

Spectra №0 Spectra №102 Spectra №83

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into the input data.



FTTransformer results. Spectra comparison for 375 real cases
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Pearson correlation Cosine similarity R2

Wasserstein distanceMSE MMDMaximum mean discrepancy

Coefficient of determination

Mean squared error



FTTransformer results. Dose assessment for 375 real cases
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The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into theinput data (measurements error = 5%).



AutoML
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AutoML solutions automatically develop ML-based models. AutoML provides automatic fine-tuning of the modelhyperparameters and blending of different models:

1. Vakhrushev, Anton, et al. "Lightautoml: Automl solution for a large financial services ecosystem", arXiv preprint arXiv:2109.01528 (2021).2. https://doi.org/10.1016/j.future.2021.08.022

E1…ESMeasurements
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Composite model

1.LightAutoML2.FEDOT



LightAutoML. Learning curve
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Loss = MAE (mean absolute error),Metric = MSE.
Final model: Random forest.
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LightAutoML results. Spectra comparison for 375 real spectra
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Spectra №67 (soft field) Spectra №68 (hard field) Spectra №226

Spectra №0 Spectra №102 Spectra №83

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations (1%) were introduced into the input data. Timeout = 720 minutes



LightAutoML results. Spectra comparison for 375 real cases
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Maximum mean discrepancy

Coefficient of determination

Mean squared error

Pearson correlation Cosine similarity R2

Wasserstein distanceMSE MMD



LightAutoML results. Dose assessment for 375 real spectra

30The 9th International Conference in Deep Learning in Computational Physics. July, 2-4, 2025 SINP MSU, Moscow, Russia.

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into theinput data (measurements error = 5%).

The best model selected: Random forest regressor.

Timeout = 24 hours



FEDOT results. Spectra comparison for 375 real cases
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Spectra №67 (soft field) Spectra №68 (hard field)

Spectra №0 Spectra №102 Spectra №83

The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations (1%) were introduced into the input data. Timeout = 720 minutes
Spectra №226



FEDOT results. Spectra comparison for 375 real cases
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Maximum mean discrepancy

Coefficient of determination

Mean squared error

Pearson correlation Cosine similarity R2

Wasserstein distanceMSE MMD



FEDOT results. Dose assessment for 375 real spectra
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The uncertainty of the spectra unfolding was estimated using the Monte Carlo method, in which random perturbations were introduced into theinput data (measurements error = 1%).

The best model selected: Scaling + Random forest regressor.

Timeout = 720 minutes



Comparison of models for JINR phasotron hard field
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FEDOTLightAutoML

TabM

FTTransformer

MLPMambular



Comparison of models
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Mean metrics for the test dataset.

On a regular basis, the capabilities of nuclear enterprises around the world are tested through international exercises and mustachieve within 30% error for neutron dose measurements, https://doi.org/10.1080/00295639.2025.2458437.
MAPE is the mean absolute percentage error.



Discussion
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• Combination of methods to improve accuracy.
• Interpretation of the results and selecting input features with explainable Artificial Intelligence(XAI) methods5.
• Other types of feature transformations6.
• Penalty for 𝜑<0 during training, other limitations based on the physics of neutrons.

The 9th International Conference in Deep Learning in Computational Physics. July, 2-4, 2025 SINP MSU, Moscow, Russia.

1. Bouhadida, M. et al, Neutron Spectrum Unfolding Using Two Architectures of Convolutional Neural Networks». Nuclear Engineering and Technology 55(6),2023, 2276–82. (CNN, range 10-9 - 20 MeV).2. Agostinelli S., et al. GEANT4—a simulation toolkit.Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3,2003: 250-303.3. Chizhov, K., Chizhov, A. Optimization of the Neutron Spectrum Unfolding Algorithm Based on Tikhonov Regularization and Shifted Legendre Polynomials. MMCP 2024, 74.4. Chizhov A., Chizhov K., Unfolding of the spectra of reference neutron fields at the Phazotron (JINR) based on readings of the Bonner multi-sphere spectrometer using the truncated singular valuedecomposition method // LXI All-Russian Conference on Problems of Dynamics, Particle Physics, Plasma Physics and Optoelectronics, RUDN University, 2025 (in Russian).5. Chizhov K. "Random forest regression and Shapley additive explanation for effective dose rate estimation in high-energy neutron fields based on Bonner spectrometer measurements." First Conference ofMathematics of AI, 2025, Sirius, Sochi.6. Song W et al. Autoint: Automatic feature interaction learning via self-attentive neural networks. Proceedings of the 28th ACM international conference on information and knowledge management. 2019.

Geant4 simulation

Improvements of the experiment setup:
• Development of a training set using Monte Carlo1 simulations (Geant4)2.
• Improving the set of moderator spheres in the high-energy region (composite sphereswith lead and other materials).
• Models for other BSS with different response functions.
• Optimal set of spheres3,4.

Improvements of the spectra unfolding:



Implementation of other DL and AutoML algorithms
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Implementation of models from pytorch Tabular1
• Feed Forward Network with Category Embedding.
• Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data.
• TabNet: Attentive Interpretable Tabular Learning (Sparse Attention).
• Mixture Density Networks (uses Gaussian components to approximate the target function).
• AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks.
• FTTransformer from Revisiting Deep Learning Models for Tabular Data.
• Gated Additive Tree Ensemble (GATE).
• Gated Adaptive Network for Deep Automated Learning of Features (GANDALF).
• DANETs: Deep Abstract Networks for Tabular Data Classification and Regression (AbsLay).

1 Joseph, Manu. "Pytorch tabular: A framework for deep learning with tabular data." arXiv preprint arXiv:2104.13638 (2021).

Large language models (LLM) + AutoML
1. FEDOT.LLM3: combines the power of Large Language Models with automated machine learning techniques toenhance data analysis and pipeline building processes (https://github.com/aimclub/FEDOT.LLM.git).

• NAMformer, a fully connected tabular deep learning architecture that combines a tabular transformerwith interpretable feature networks (arXiv:2504.08712v).• Gradient Boosting Neural Networks: GrowNet (arXiv:2002.07971v2).• TabDDPM (arXiv:2209.15421).• TabR (arXiv:2307.14338).



App

38The 9th International Conference in Deep Learning in Computational Physics. July, 2-4, 2025 SINP MSU, Moscow, Russia.

Measurements
Initial unfolding

Initial guess spectra(a priori information) Fine-tuning Unfolded spectra

maximumentropyprinciple5

TikhonovRegularization3
iterations(Landweber6,...)

TSVD4

DL for tabular

...

Fine-tuning

...

AutoML

Doseassessment

E1…ES
NN2

1. Chizhov, K., Chizhov, A. Optimization of the Neutron Spectrum Unfolding Algorithm Based on Tikhonov Regularization and Shifted Legendre Polynomials. MMCP 2024, 74.2. Bely A.A., Chizhov K.A. Development of a web application for an experiment on unfolding neutron spectra using a neural network algorithm, XXX All-Russian scientific and practical conference ofstudents, graduate students and young specialists, “Dubna” University, Dubna, 2025 (in Russian).3. Chizhov, K., Beskrovnaya, L., Chizhov, A. Neutron Spectra Unfolding from Bonner Spectrometer Readings by the Regularization Method Using the Legendre Polynomials, Phys. Part. Nuclei, 55:532–534, 2024.4. Chizhov A., Chizhov K., Unfolding of the spectra of reference neutron fields at the Phazotron (JINR) based on readings of the Bonner multi-sphere spectrometer using the truncated singular valuedecomposition method // LXI All-Russian Conference on Problems of Dynamics, Particle Physics, Plasma Physics and Optoelectronics, RUDN University, 2025 (in Russian).5. Reginatto M., Goldhagen P. MAXED, a computer code for maximum entropy deconvolution of multisphere neutron spectrometer data. Health Physics 77.5 (1999): 579-583.6. Landweber L.,An iteration, formula for Fredholm integral equations of the first kind. Amer. J. Math.73, 615–624, 1951.

Optimal setof spheres
SHAP, TSVD,Cond(A)1,...

Hp(10).



Implementation & restrictions
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• The method is suitable for unfolding spectra in stationary neutron fields.
• It is necessary to prepare a model for each BSS detector and set of moderator spheres. Trained models could

take up a lot of disk space.
• Used set of Bonner spectrometer spheres limits the energy range of unfolded spectrum.
• The uncertainty of sensitivity functions is not taken into account. It is usually ~ 2% because it’s calculated by

the Monte Carlo Method with sufficient statistics1.
• The app uses many dependencies, it is necessary to run in a virtual environment or container.
• The client-server implementation will allow access to spectrum analysis from any device, even a portable one.

Neutron spektrometer NEMUS, https://www.ptb.de/cms/en/ptb/fachabteilungen/abt6/fb-64/643-neutron-spectrometry/nemus/neutron-spektrometer-nemus-neutron-multisphere-spectrometer.html

1DOI: 10.1088/1009-0630/17/1/15



Conclusions
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1. Transformations of original scalar continuous features (readings of the Bonner spectrometer) into vectors were used for
training of deep neural networks. This allowed us to expand the set of input features, since due to the limited set of
spheres and correlations in it sensitivity functions, the number of input measurements is limited.

2. Neutron spectra were unfolded using deep learning regressor models included in the Mambular framework. The results
are compared with the spectra unfolded using the AutoML frameworks: LightAutoML and FEDOT. Metrics R2, MSE,
cosine similarity, Wasserstein distance, Pearson correlation coefficient and MMD were assessed. The effective dose rate
estimated from unfolded spectra showed good agreement with the actual ones, the estimation error does not exceed 15%,
except SAINT method.

3. Comparison of algorithms showed that Mambular has the best metrics for R2 = 0.80, Pearson correlation coefficient =
0.90, cosine similarity = 0.94 and Wasserstein distance = 3.8E-3. Mambular, ResNet, FTTransformer has the best metric
for MMD = 4.5E-2. The smallest MSE= 3.55E-4 is for FEDOT.

4. The conditional stability of models to uncertainty in input data was investigated, MLP showed the best results.
5. The proposed method could be used for improving radiation protection in high-energy neutron fields.
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Thank you!

kchizhov@jinr.ru
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