
M
ES

H
C

H
ER

YA
K

O
V 

 L
A

B
O

R
AT

O
RY

  O
F 

 
IN

FO
R

M
AT

IO
N

  T
EC

H
N

O
LO

G
IE

S
SPD Online Filter Middleware

Romanychev L.R., Greben N.V., Oleynik D.A., Korshunova P.A., Plotnikov A.V.
«SPD Online Filter» is a hardware-software system designed for multi-stage, high-throughput processing of data from the SPD detector. Its main task is the primary processing of data, in 

order to reduce its volume for long-term storage and subsequent full processing. The «SPD Online Filter» comprises a dedicated compute cluster, a middleware software, and a set of 
application-level services. The middleware layer consists of three microservice-based systems that communicate via lightweight API gateways for request routing and a message broker to 
decouple producers and consumers. Together, they form a configurable, fault-tolerant, and scalable data-processing pipeline.

Triggerless DAQ means that the output of the system is not a set of raw events, but a set of 
signals from sub-detectors organized into time slices. DAQ provide data organized in time 
frames which placed in files with reasonable size (a few GB). Each of these file may be 
processed independently as a part of top-level workflow chain. No needs to exchange of any 
information during handling of each initial file, but results of may be used as input for next 
step of processing.

TRIGGERLESS DATAFLOW IN SPD HIGH-LEVEL ARCHITECTURE

MIDDLEWARE

PILOT AGENT

HIGH-THROUGHPUT COMPUTING

FIRST «LOAD TESTING»

Pilots are an integral part of the WMS and are responsible for executing jobs on compute 
nodes, organizing their execution and communicating various information about the 
progress and state of the WMS node to the services. Compute nodes differ only in the 
availability of specialized co-processors (GPUs) and are assigned to the appropriate 
message broker based on the computational needs of the job.

In our first “load” test, 100 concurrent Pilot agents processed approximately 2,100 jobs in 7 
minutes (≈15 s per job, including stage-in and stage-out) on standard JINR Cloud VMs 
using a simplified synthetic payload.

• HTC is defined as a type of computing that simultaneously executes numerous simple 
and computationally independent jobs to perform a data processing task.
• Since each data element can be processed simultaneously, this can be applied to data 
aggregated by a data acquisition system (DAQ).
• To ensure efficient utilization of computational resources, data processing should be 
multi-stage:
• One stage of processing → task
• Processing a block of data(file) → job

An intermediate software layer that connects hardware resources 
and application services. Primary purpose is to abstract the 
complexity of the compute cluster and provide a unified interface 
for application software.

SPD Online Filter is a primary data processing facility designed for the high throughput, 
multi-step processing of data from the SPD detector.

Key Functions
• Data management
• Coordination of multi-stage workflows
• Efficient workload management, usage of computing resources.

Role in SPD Online Filter: bridges the dedicated compute cluster 
and applied software, enabling a configurable and scalable 
data-processing pipeline.

Data Management System (DMS)
• Data lifecycle support (data catalog, 
consistency check, cleanup, storage);
Workflow Management System (WfMS)
• Define and execute data processing chains 
by generating the required number of 
computational tasks;

Workload management System (WMS)
• Create the required number of 
processing jobs to perform the task;
• Control job execution through pilots 
working on compute nodes;
• Handles efficient use of resources.

TECHNOLOGICAL STACK
We built the SPD Online Filter middleware as a suite of containerized microservices 
delivered via Docker and deployed on our local JINR Cloud through GitLab CI/CD, 
ensuring consistent environments and rapid, automated rollouts. 

At its core, FastAPI (backed by Pydantic) provides a high-performance, async web 
framework—complete with dependency-injection support—for defining clean, type-safe 
REST endpoints. 

For persistence, we chose PostgreSQL paired with SQLAlchemy 2.0’s modern async 
ORM (and asyncpg for low-overhead database I/O), while Alembic handles all schema 
evolution through versioned migration scripts. 

RabbitMQ, accessed via aio-pika, supplies reliable, brokered messaging to decouple 
producers and consumers across the filter pipeline. Together, this stack delivers a scalable, 
maintainable, and testable architecture—its clear separation of concerns, built-in data 
validation, and containerized delivery make it ideal for the real-time, multi-stage filtering 
demands of the SPD experiment.


