
Methods of Statistical Analysis in Server Hardware Failure Prediction

Albert Dzakhoev Nikita Balashov Elbrus Olisaev

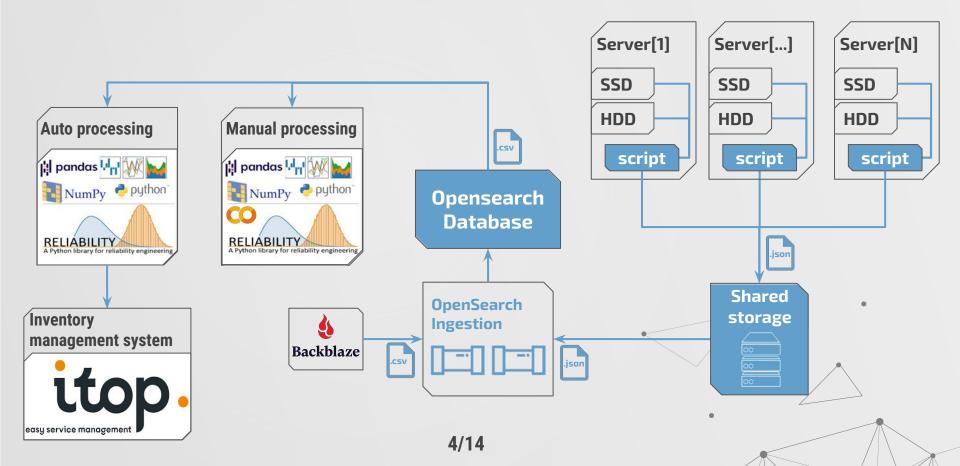
Project Motivation

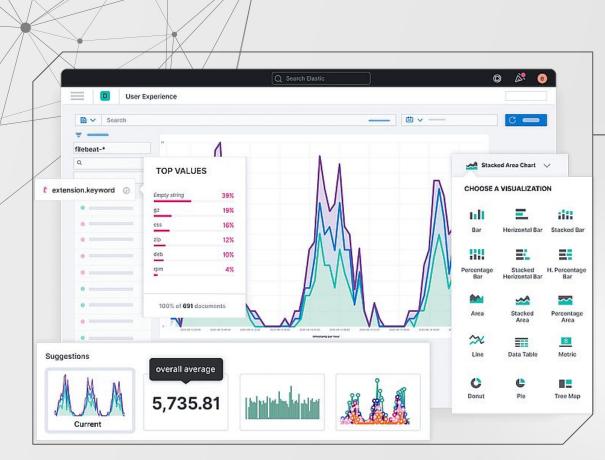
Relevance: This project addresses the need for faster replacement of faulty equipment, minimizing delays that would otherwise occur while waiting for parts to be shipped. Additionally, when post-warranty service is our responsibility, having spare parts readily available will further expedite the repair process.

Project Objective: Development of a software tool based on statistical analysis methods to predict server equipment failures. This will enable better planning and stock management, reducing dependence on external suppliers.

Bathtub curve

The bathtub curve is a graph that represents the change in the observed failure rate of components over time. It consists of three main stages: **Early failures** with a high failure frequency, **Useful lifetime** with a nearly constant failure frequency due to random events, and **Wearout failures** with an increasing failure frequency due to wear.


=== START OF INFORMATION SECTION === Vendor: SEAGATE Product: ST18000NM004J Revision: E004 Compliance: SPC-5 User Capacity: 18,000,207,937,536 bytes [18.0 TB] Logical block size: 512 bytes Physical block size: 4096 bytes LU is fully provisioned Rotation Rate: 7200 rpm Form Factor: 3.5 inches 0x5000c500dad5185f Logical Unit id: Serial number: ZR5ETNBY0000W332TVTX Device type: disk Transport protocol: SAS (SPL-3) Local Time is: Mon Oct 23 12:35:22 2023 MSK SMART support is: Available - device has SMART capability. SMART support is: Enabled Temperature Warning: Enabled Enabled Read Cache is: Writeback Cache is: **Fnabled**


=== START OF READ SMART DATA SECTION === SMART Health Status: OK

S.M.A.R.T. REPORTS

S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) - is a technology used in hard drives to monitor and assess their condition. SMART-reports contain data on the hard drive's status, such as temperature, the number of read/write errors, the number of reboots, and so on.

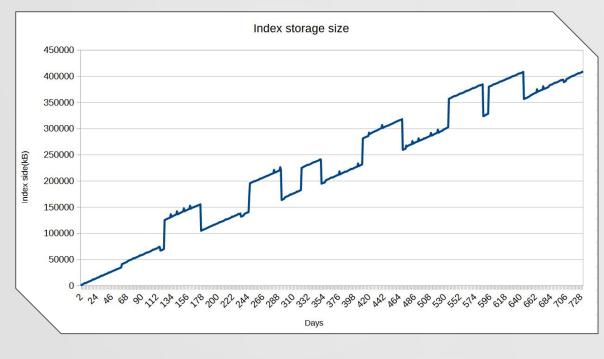
System Architecture

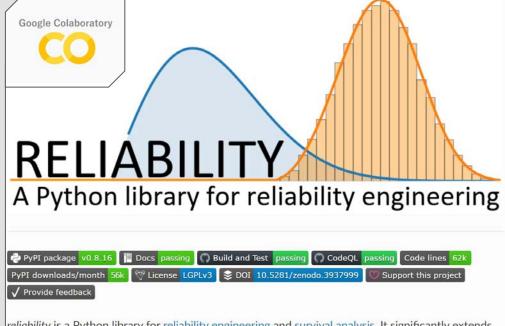
OPENSEARCH STACK

A platform for data storage and retrieval that provides tools for visualization, monitoring, and managing large volumes of information in real-time. It provides the ability to use pipelines for preliminary data processing, which allows us to standardize and transform data before indexing.

Reports Differences

5	Reallocated_Sector_Ct	-0CK	100	100	000	-	18
9	Power_On_Hours	-0CK	100	100	000		28052
12	Power_Cycle_Count	-0CK	100	100	000		2610
170	Unknown_Attribute	POCK	099	099	010		0
171	Program_Fail_Count	-0CK	099	099	000		16
172	Erase_Fail_Count	-0CK	100	100	000		0
173	Unknown_Attribute	P0CK	100	100	005		51541835777
174	Unexpect_Power_Loss_Ct	-0CK	100	DOD	000	-	250
183	SATA_Downshift_Count	-0CK	100	100	000		0
184	End-to-End_Error	P0CK	100	100	090		0
187	Reported_Uncorrect	-0CK	100	100	000		0
190	Temperature_Case	-0CK	021	046	000	2	21 (Min/Max 7/46)
192	Unsafe_Shutdown_Count	-0CK	100	100	000		230
199	CRC_Error_Count	-0CK	100	100	000		1
225	Host_Writes_32MiB	-0CK	100	100	000		361884
226	Workld_Media_Wear_Indic	-0CK	100	100	000		0
		~ ~~	***				


S.M.A.R.T. reports for Intel S3520 SSDs and Intel 545s


Parameter names **174**, **184**, **187**, and **190** vary between the two models, even though both are Intel SSDs. Utilizing pipelines simplifies subsequent analysis by eliminating duplication and enhancing data consistency.

5 Reallocated_Sector_Ct	-0CK	100	099	000	-	4
9 Power_On_Hours	-0CK	100	100	000		53660
12 Power_Cycle_Count	-0CK	100	100	000		6
170 Available_Reservd_Space	P0CK	099	099	010		0
171 Program_Fail_Count	-0CK	099	099	000		425
172 Erase_Fail_Count	-0CK	100	100	000		0
174 Unsafe_Shutdown_Count	-0CK	100	100	000		4
175 Power_Loss_Cap_Test	POCK	100	100	010		14150 (325 7195)
183 SATA_Downshift_Count	-0CK	100	100	000		184
184 End-to-End_Error_Count	Р0СК	100	100	090		0
187 Uncorrectable_Error_Cnt	-0CK	100	100	000		0
190 Case_Temperature	-0К	074	069	000		26 (Min/Max 13/31)
192 Unsafe_Shutdown_Count	-0CK	100	100	000		4
194 Drive_Temperature	-0К	100	100	000		26
197 Pending_Sector_Count	-0C-	100	100	000		0
199 CRC_Error_Count	-OSRCK	100	100	000		0
225 Host_Writes_32MiB	-0CK	100	100	000		1462063
226 Workld_Media_Wear_Indic	-0CK	100	100	000		2539
227 Workld_Host_Reads_Perc	-0CK	100	100	000		64
228 Workload_Minutes	-0CK	100	100	000		3219551
232 Available_Reservd_Space	P0CK	099	099	010		0
233 Media_Wearout_Indicator	-0CK	098	098	000		0
234 Thermal_Throttle_Status	-0CK	100	100	000		0/0
241 Host_Writes_32MiB	-0CK	100	100	000		1462063
242 Host_Reads_32MiB	-0CK	100	100	000		2620611
NAND_Writes_32MiB	-0CK	100	100	000		6639976
				/	· · ·	

Required Space Estimation

The index database size increase remains linear over two years of data accumulation

reliability is a Python library for reliability engineering and survival analysis. It significantly extends the functionality of scipy.stats and also includes many specialist tools that are otherwise only available in proprietary software.

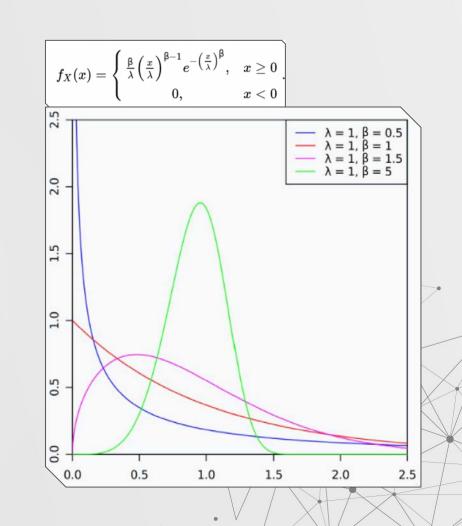
RELIABILITY

A library that implements various methods for calculating and analyzing reliability data, including the Weibull distribution.

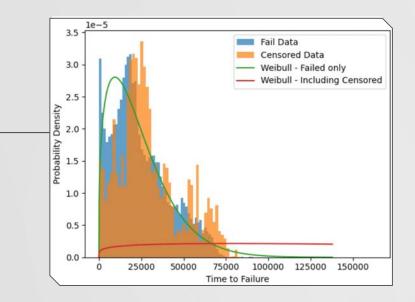
Backblaze

An American company specializing in providing online data storage and backup services. They publish detailed statistics on the performance of thousands of hard drives used in their data centers.

Weibull distribution

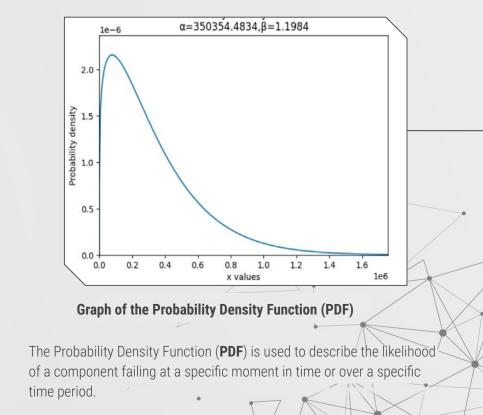

The **Weibull distribution** is used in reliability analysis, for example, to calculate the mean time to failure (MTTF) of a device.

Applications:

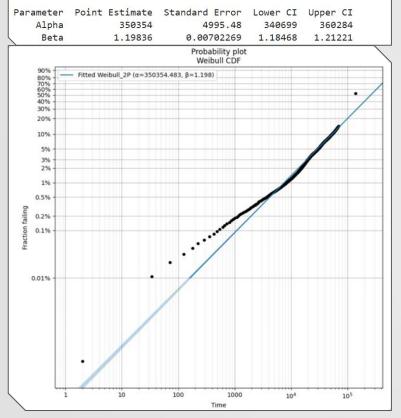

• Modeling the time between events.

10/14

• Survival analysis.



Probability Density Function


Histogram of the Data Used

- Fail Data operating time of failed disks
- Censored Data operating time of disks still in operation

Results from Fit Weibull 2P (95% CI):

Analysis method: Maximum Likelihood Estimation (MLE) Optimizer: TNC Failures / Right censored: 20897/370412 (94.65972% right censored)

Maximum Likelihood Estimation

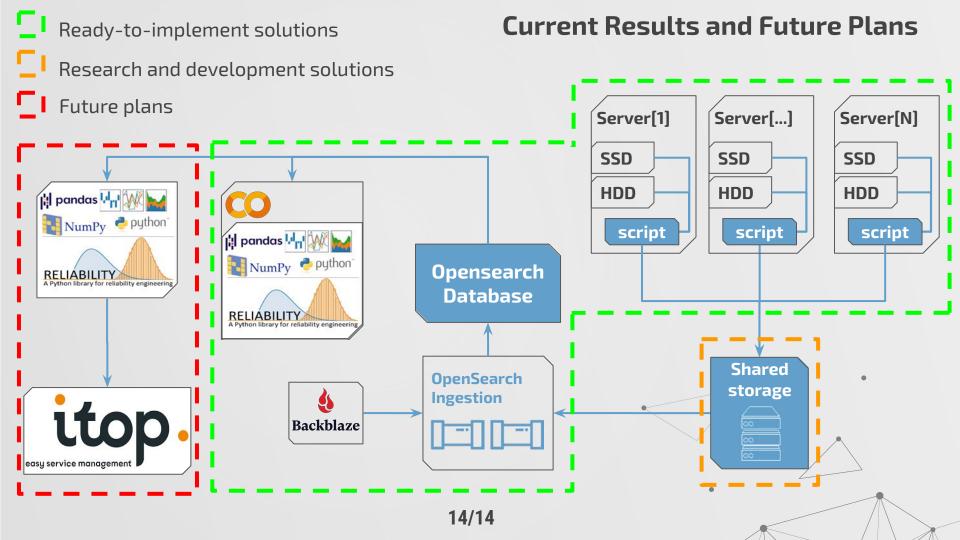
Weibull distribution analysis conducted using Maximum Likelihood Estimation (**MLE**). We use the coefficients obtained from processing these data for future calculations. The plot indicates the likelihood of failure over time for the dataset and provides a visual confirmation of the Weibull model fit.

Data Overview:

- Total samples: 370412
- Failures: 20897
- Right censored: 94.65972%, meaning that most data points did not fail within the observed period

Analysis Example

These are the forecasts based on **Backblaze** data for the approximate parameters of the computing infrastructure at **JINR**.


Probability of failure and expected number of failures by specific times: Time 10000: Probability of failure of one disk by time 10000: 1.3998% Expected number of failures out of 4000 disks by time 10000: 56.0

Time 20000: Probability of failure of one disk by time 20000: 3.1831% Expected number of failures out of 4000 disks by time 20000: 127.3

Time 30000:

Probability of failure of one disk by time 30000: 5.1229% Expected number of failures out of 4000 disks by time 30000: 204.9

Approximate number of components that will fail in the time interval between the first and second year [8760, 17520]: 61.08

