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Solving the optimization problem for the characteristics of the thermal
source of a cryogenic cell – a multilayer cylindrical sandwich-type
configuration (see Fig..1) designed for a pulsed dosed injection of the
working substance into the ionization chamber of the source of multiply
charged ions – is considered. To solve the optimization problem, we
have developed the MPI+OpenMP hybrid parallel calculation algorithm
based on the brute force method (see Fig..2) to search for the
maximum of the integral of proportionality to the volume of gas
evaporated from the cell surface. The algorithm leads to multiple
solutions of the initial boundary value problem for the heat equation,
which is solved numerically by the alternating direction implicit method
(ADI) (see Fig..2). A method of simple iterations with an adaptive time-
step is implemented to solve nonlinear difference equations. The
solution of the optimization problem for a specific cell configuration on
the GOVORUN supercomputer has demonstrated a ten- to hundredfold
acceleration of calculations (see Fig..3).
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Fig..3. The calculation time and its estimation. The right column
corresponds to the time of solving the optimization problem; it is the
time obtained for the master MPI process from the beginning of the
program run to the result output. The middle column is the estimate of
the calculation time of one Intel Xeon Gold 6154 (SkyLake) processor
with 18 cores and multithreading enabled (36 threads), this estimate is
obtained by summing the calculation time of slave MPI processes. The
left column is the estimate obtained as a product of the average
acceleration with the use of 36 OpenMP-threads by slave MPI
processes and the estimate of the calculation time of one processor
(middle column).
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Fig..1. A schematic view of a quarter of the cell slice through the axis
and its cross-section. The bottom line is r=0. The cooler (the copper
core rod) cools the cell by contact with the temperature terminal (liquid
helium with 4.2.K). The heater (the conductive layer) heats the cell up
by the way of passing the electrical current. The inner insulator is
needed to prevent the electrical current outflow from the heater to the
cooler. The heat process starts by passing the pulse electrical current
through the conductive layer.
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Fig..2. A flowchart of the algorithm for solving the optimization problem
on MPI (left bottom), which leads to a multiple solution of the source
control problem to find the value of I0 (right bottom), which in turn leads
to a multiple solution of the direct problem on OpenMP (upper).

* Estimation of the
computational time

~ 1.5 years

~ 1.5 month

1000

100

10

1

Heat Equation

The heat conduction equation describing the considered heat
evolution is the following4,5
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here n 2 N0, �(T , r) – temperature depended resistivity,
I (r) – electrical current amplitude, SC – cross-section of the
conductive layer, tper > tsrc – period of one operation and time of
heating correspondingly, and ✓(t) is the Heaviside step function
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Formulation of the optimization problem

The optimization problem is formulated as following:

{tprd, tsrc, I0} = argmax
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here S is the surface area of the cylinder with radius rmax and
length z0, and the function F (t, z) is expressed as above:
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Boundary Value Problem

T (r , z , t = 0) = T0,

where T0 ⌘ 4.2K is the temperature of liquid helium.

8
<

:

@T

@n
= 0 8 (r , z) 2 �⌦ \ {(r , z) : z = zmax},

T = T0 8 (r , z) 2 {(r , z) : z = zmax},
where �⌦ is the boundary of ⌦, n is the normal vector of the
boundary �⌦. This assumption is motivated by the following
statements:
I the cryonics cell is installed in the vacuum chamber, therefore,

there is no convective heat transfer;
I the working temperature is too low for the appearance of

thermal radiation;
I we neglect the energy for evaporation of gas molecules;
I there is no temperature flow through the axis r = 0 due to the

axial symmetry.
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Algorithm for Solving the Optimization Problem

Load n procs and arrays
Tp = {t prdp|p = 1, ..,Mp},
Tq = {t srcq|q = 1, ..,Mq},

n tasks= Mp ⇥Mq

n run=min{n tasks,
num procs}
n tasks =

n tasks � n run

Start n run jobs in
paralell, each job on
single node for pair
t prdp and t srcq

Wait for single result
(integral) and write
it to apropriate array

n tasks > 0 ?

n run=n run�1 n run > 0 ?

Sort all results by
decreasing integral.
Return solution with
the maximal one.

Terminate

n tasks=n tasks�1
calculate next pair
t prdp, t srcq

yes

no
yes

no

MPI
Load parameters from the input

time per, time src

Estimate upper bound
ampMax for amplitude,

ampMin = 0

ampMax �
ampMin <
precision

Return results:
amplitude, integral,
number of period

Terminate

Calculate solution
in: ampMin, ampMax
out: ampMin, ampMax,
integral, iteration

no

yes

Optimization Problem Source Control Problem
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Flowchart of the OpenMP Algorithm
Load tprd, tsrc, I;

Initialize solution Ti,j ;
Set k = 0, tk = 0

Initialize ⌧
⌧ = ttrs/1000 inside
transition process

⌧ = tsrc/100 elswhere

s = 0
T

0
i,j = Ti,j

s = s + 1

T
s
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(12) (T
s�1
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bT s
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Ti,j = bTi,j

Termination
condition?

Return Ti,j

Terminate

yes
yes

yes
yes

no
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OpenMP for each j
OpenMP for each i

For the convergence reason the adaptive time-step has been
implemented: ⌧ = ⌧ (0)/2bs/iterc
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