

Heavy fragments (³He and ⁴He) identification using the energy loss method in the STS detector of the CBM experiment

O.Yu. Derenovskaya^{1*}, V.V. Ivanov^{1,2}, I.O. Vassiliev^{3,4}

¹LIT JINR, Dubna, Russia, ²NRNU "MEPhl", Moscow, Russia, ³Frankfurt University, Germany, ⁴GSI, Darmstadt, Germany

CBM Heavy-ion Experiment

- CBM is a future fixed-target heavy-ion experiment at FAIR
- observables include very rare (or extremely rare) probes
- very high interaction rates of up to 10 MHz
- up to 1000 charged particles/collision

Motivation

One of the aims of the experiment is to study the production of hypernuclei. Theoretical models predict that single and even doubly strange hypernuclei are produced in heavy-ion collisions with a maximum yield in the region of SIS100 energies. The discovery and the investigation of new (doubly strange) hypernuclei will shed light on hyperon-nucleon and hyperon-hyperon interactions. In order to accurately measure the yields of hypernuclei and their lifetime, one should identify their decay products including ³He and ⁴He. PID detectors: TOF. TRD. STS

Goal: to study the possibility of using the STS detector for particle identification in addition to the dedicated PID detectors.

Input for simulation 3He Two sets of data:

- Siganl: ³He, ⁴He, d, t (simulated according to the thermal distribution)
- background events (UrQMD)
- central AuAu collisions at 10 AGeV
- sis100 electron setup without MVD

10

G 5 1 (

Perfect separation between single- and double-charged particles for the whole momentum range

ω_n^k criterion for particle identification in STS

Each track is associated with a set of measurements of particle energy losses. With the help of ω_n^k , one should determine to which distribution (signal

- using dE/dx and $\omega^{k_{p}}$ in STS.
- 2. To apply the proposed procedure to the hypernuclei reconstruction