
Ariadne: PyTorch Library for
Particle Track Reconstruction

Using Deep Learning

The reported study was funded by RFBR according to the research project
№ 18-02-40101

ARIADNE

Pavel Goncharov, Egor Schavelev, Anastasia Nikolskaya, Gennady

Ososkov
Joint Institute for Nuclear Research, Saint Petersburg State University

1

Tracking is our main focus

2 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

Tracking or track finding is a process of reconstruction the particle’s trajectories in high-energy physics detector by
connecting the points – hits – that each particle leaves passing through detector’s planes.
Tracking includes track seeding and track building phases.

Dream team of tracking

3 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

• Gennady Ososkov
• Pavel Goncharov

Data Science team

• Dmitry Baranov
Physicists kernel

• Andrey Nechaevskiy
Grants management

Team is
growing!

NEC-2017

JINR Summer
school

JINR student
practice Nowadays

• Anastasia Nikolskaya
• Ekaterina Rezvaya

• Egor Schavelev

CHEP-2018

NEC-2019

BES-III
experiment

• Aleksey Zhemchugov
• Igor Denisenko
• Yuri Nefedov

More and more models each time

4 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

M

t1

tM

GRU GRU

GRU GRU

X Y Z

PADDING

PADDING

...

σ

TRACK
or

GHOST

Classification

part

/

Regression

part/

X-coord

Y-coord

Softplus

Linear

Sigmoid

R1
semiaxis

R2
semiaxis

GRU GRU
t2

Convolutional
2xGRU

Same for experiments

5 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

Baryonic Matter at Nuclotron (BM@N) BESIII MPD in the end ???

How to become the master of
chaos

6 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

The problem is that all these models have:
• data preprocessing
• training skeleton
• metrics

Moreover, they are:
• Separated in different github repositories

• with different freshness code (two-step approach became legacy almost a hundred years ago)

• Even with different deep learning backends (Old TensorFlow vs Keras vs TF 2.0 vs PyTorch)

1. Therefore, it is very difficult to keep all the repositories fresh and compare methods for equal criteria.
2. Besides, it seems almost impossible that any physicist will understand how to apply the proposed methods to his

problem and data.

SAME

Here Ariadne appears on the stage

7 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

Our goal is to create the first open-source library for particle tracking based on deep learning methods.
We named it Ariadne in fame of Ariadne's thread which means the path leading to the goal in difficult conditions as
in the tracking process.

Library should
• provide a simple interface that allows one to prepare his data
• implement all our best models with ability to train them on an arbitrary tracking task
• have a modular structure and abstract classes simplifying the process of developing custom model and data

processing pipeline
• include the system of configuration files for fast reproducing of the experiments with 100% reproducibility
• be open-sourced to facilitate academic research in the field of particle tracking based on deep learning

Also, our wish list includes many other small points:
• multi-GPU training
• hyperparameters optimization
• metrics logging
• multiprocessing for data preparation
• etc.

ARIADNE

Ariadne is PyTorch-based

8 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

We have chosen PyTorch as a base deep
learning framework for our library because
• until recently (TF 2.3) tensorflow didn’t

have full reproducibility on GPUs
• pytorch Datasets much more convenient

and flexible in our opinion than
tf.data.Dataset

• at this time researches prefer pytorch, so
most of the novel models appear in
pytorch at first

Ariadne’s concept

9 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

Model Criterion

Metrics Dataset

Training Data
preparation Inference

Preprocessor
Trained
Model

Preprocessor

Data Preparation

10 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

For the data preparation step we introduce transformations that allow us to:
• translate coordinates into another system, e.g. cartesian to cylindrical
• filter out inapplicable tracks or events
• normalize and rescale features to be in an unit variance

self.transformer = Compose([
 DropFakes(),
 DropSpinningTracks(),
 DropShort(),
 ToCylindrical(),
 ConstraintsNormalize(
 use_global_constraints=False,
 constraints=radial_stations_constraints,
 columns=('r', 'phi', 'z')
),
])

Also we can compose multiple
transformations in one block for convenience

At the moment, we have a plenty of transformations:
• StandardScale
• MinMaxScale
• Normalize
• ConstraintsNormalize
• DropShort
• DropSpinningTracks
• DropFakes
• ToCylindrical
• ToCartesian
• ToBuckets

PyTorch Lightning as a core of
training

11 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research as stated on its github.
Lightning helps you to disentangle code to make it more readable, flexible and suitable for testing.

We created a special class TrainModel which is actually a
Lightning module to extend the functionality of simple
pytorch code with Lightning features:
• full reproducibility
• checkpoining
• callbacks
• metrics logging
• multi-GPU training
• TPU training
• learning rate schedulers
• batch size optimization
• etc.

System of configuration files

12 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

To allow the users to reproduce our experiments and
setup their own easily we introduce a structure of
configuration files, consisting of:
• train configs
• data preparation configs
• inference/evaluation configs

Standard Python ArgumentParser is not very flexible
so we decided to utilize gin-configs.

Gin-config opens an opportunity to specify the whole
classes with their arguments inside a configuration
file, so in future all the users of our library will be
able to “program” any training from scratch using
Ariadne modules and such approach requires no
knowledge of Python.

experiment setup ###
experiment.model = @TrackNETv2
experiment.criterion = @TrackNetLoss
experiment.metrics = [@ellipse_area, @efficiency]
experiment.optimizer = @Adam
experiment.data_loader = @TrackNetV2DataLoader
experiment.epochs = 20
experiment.fp16_training = False
experiment.random_seed = 42

model ###
TrackNETv2.input_features = 3
TrackNETv2.conv_features = 32
TrackNETv2.rnn_type = 'gru'
TrackNETv2.batch_first = True

data ###
TrackNetV2DataLoader.batch_size = 16
TrackNetV2DataLoader.dataset = @TrackNetV2Dataset
TrackNetV2DataLoader.max_size = 10000
TrackNetV2DataLoader.valid_size = 0.3

Example

TrackNETv2 is a
class inherited from
pytorch.Module

Run training in the HybriLIT

13 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

As we are working on the base of Laboratory of Information Technologies we want to be able to run all our scripts in
the HybriLIT’s environment and especially on the GOVORUN supercomputer.

We added several scripts in the ‘scripts/hydra’ path for that purpose. So now you don’t need to build an
environment, download dependencies and manage conflicts between libraries versions. We created two
configurations of conda environments – for gpu and cpu usage.

For example, to execute training script on the GPU queue of hydra cluster:
1. Verify that the miniconda has installed in the ~/miniconda3 or manually change the path in the script you want

to execute. Run with source ~/miniconda3/etc/profile.d/conda.sh command
2. Run scripts/hydra/hydra_gpu.sh script:

3. The slurm-jobid.out file with stdout will appear in the root directory.

For more details see the README in the https://github.com/t3hseus/ariadne repository.

https://github.com/t3hseus/ariadne

Inference

14 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

Intermediate results

15 17.11.2020 P.Goncharov et al., Ariadne, AYSS-2020

This is not the last chapter of our Ariadne's history, but we have already achieved some results:
• most of the code for training is completed, however it requires a refactoring
• data preparation pipeline for the TrackNETv2 and GraphNet models on the BESIII data was made
• two models – TrackNETv2 and GraphNet have already been trained using Ariadne (watch tomorrow’s

presentations of Egor Schavelev and Anastasia Nikolskaya)
• models were trained using HybriLIT cluster

Ariadne: PyTorch Library for
Particle Track Reconstruction

Using Deep Learning

The reported study was funded by RFBR according to the research project
№ 18-02-40101

ARIADNE

Pavel Goncharov, Egor Schavelev, Anastasia Nikolskaya, Gennady

Ososkov
Joint Institute for Nuclear Research, Saint Petersburg State University

16

Ariadne Github:

	Ariadne: PyTorch Library for Particle Track Reconstruction Using Deep Learning����The reported study was funded by RFBR according to the research project № 18-02-40101
	Слайд номер 2
	Слайд номер 3
	Слайд номер 4
	Слайд номер 5
	Слайд номер 6
	Слайд номер 7
	Слайд номер 8
	Слайд номер 9
	Слайд номер 10
	Слайд номер 11
	Слайд номер 12
	Слайд номер 13
	Слайд номер 14
	Слайд номер 15
	Ariadne: PyTorch Library for Particle Track Reconstruction Using Deep Learning����The reported study was funded by RFBR according to the research project № 18-02-40101

