Design by Contract & Acceptance Test Driven Development in MPDRoot

HNATIC Slavomir

OUTLINE

- Quick recap (Nov 2022 status)
- Design by Contract
- TPC API
- QA tool
- Acceptance TDD
- JSRoot Examples
- Perspectives, Next Objectives
- Final Remarks

QUICK RECAP

SOFTWARE DEVELOPMENT FOR MPD List of the most important things done

- Complexity reduction
 - downscaling/separation:
 build system, reconstruction/simulation engine, physics
 - codebase cleanup
- Code quality
 - code reviews
 - code influx under control
 - testing (in process)
 - formatting
 - requirements modeling
- Build redesign/unified environment
- Stable release schedule
- Support & Maintenance
 - service desk
 - website
 - telegram support chat

SWEBOK v3 (2015)

International ISO Standard
specifying the guide to
Software Engineering Body of Knowledge

TDD: ALGORITHM DEVELOPMENT

Status & Objectives as of November 2022

DESIGNING TESTS ON MULTIPLE ABSTRACTION LEVELS

Test level hierarchy "system / component / unit" adapted for MPDRoot's backend:

- Top level......QA
- Middle level......component tests.....reconstruction FairTasks (invariant interfaces)
- Bottom level.....unit tests.....interface units (invariant pure virtual methods)

Cluster Hit Finder

Preparatory work

- create invariant Base class for geometry
- interface for clusterhitfinder
- port mlem & fast implementations to it
- getting rid of singletons
- test-friendly design dependency injection

TDD

- multilevel analysis
- multi-module analysis
- performance & accuracy criteria
- data-driven tests
- hybrid algorithms

DESIGN BY CONTRACT

Software Development Stages

Requirements

Architecture / Design

Construction

Testing

Integration

INTEGRATION

- Rarely mentioned and almost never planned for
- Reality: multiple independent streams of development
- Assumption: once everyone finishes it will all somehow fit in and work
- Common result: turns out to be a major issue and a significant risk factor of project failure/delay
- Last resort fixes: redesign at late project stages, writing of unnecessary modules

SOLUTION

From the very beginning do:

- Have interfaces
- Agree on interfaces
- Manage interfaces
- Interface control document

All realizations must implement interfaces that are agreed upon

Ensures software fitness, compactness and TESTABILITY

TPC API

API – set of signatures that are exported and available to the users of a library or framework to write their applications.

Key API design notes

- Lead to readable code
- Easy to learn and memorize
- Be complete & stable for proper development and maintenance (be model based)
- Outlast its implementations (invariants)
- Be hard to misuse
- Be easy to extend
- Lead to backward compatibility

Source: SWEBOK (Software Engineering Body of Knowledge), 2015

QA TOOL

- QA Engine is a separated entity on its own
- interacts through API with reconstruction/simulation backend and generates output for visual front-end
- work of testers and algorithm developers is separated

Implementation

- Modular design, lives in backend interfaces, operates with abstractions
- QA engine turned off by default, option to turn on QA for separate modules
- output QA information stored into .root files for use in later processing

ACCEPTANCE TDD

Fundamental Rule

The more systematic we are in testing, the more efficient/effective we are in building/supporting/maintaining our software.

Software Defects

- the later the defect is fixed, the more it costs to correct
- detect defects early
- fix defects asap, avoid technical debt

ACCEPTANCE TESTS = REQUIREMENTS

- development driven by multi-level acceptance tests
- requirements written in precise test case language
- acceptance criteria/their fulfillment is data-driven

! data are customized for acceptance criteria!

EXAMPLE IN JSROOT

CLUSTERHITFINDER COMPARISON

- Mlem
- Fast

ABSTRACTION LEVELS

- Topbench......Reconstruction
- Middle.....component....ClusterHitFinder
- Bottomunits.......Clustering, Topology, Hit extraction

PERSPECTIVES, FUTURE PLAN

ENVIRONMENT for ALGORITHM IMPROVEMENT

Automation - QA Gallery / Interactive Development using the existing JINR infrastructure

- JupyterHUB
- EOS filesystem
- Sets of QA plots automatically displayed
- Custom code injection
- Cell structure with reprocess functionality
- Improvements integrated into main C++ codebase

PERSPECTIVES, FUTURE PLAN

ENVIRONMENT for ALGORITHM IMPROVEMENT

Interactive
Development
Workflow
Example

MAJOR BENEFIT

On arrival of the data from real experiment, the optimized algorithm improvement workflow with required infrastructure/environment is in place

FINAL REMARKS

SPECIFIC TARGETS

- Fast clusterhitfinder algorithm accuracy improvement
- Environment + workflows for fine tuning the clustering & hit extraction ready by the time real data arrive

TEST DESIGN GUIDELINES

- maximum coverage with minimum tests
- risk based prioritization
- boundary cases coverage

Test environment is effective when absolute majority of defects is caught by developers, not by users.

Thank You!

Q & A

SERVICE DESK for Questions

http://mpdroot.jinr.ru/q-a/

If your question is not answered below, you can email it to our service desk

contact+nica-mpdroot-support-1045-issue-@git.jinr.ru

Please:

• describe how to reproduce your problem

• provide information about your system configuration

• provide screenshots if available and any additional information you consider relevant

"User Involvement – **critical** project success factor" *CHAOS Report 2015*, Standish Group