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Equation

We consider the ϕ4 equation

Φtt −∆Φ− Φ+ Φ3 = 0, ∆ =
d2

dr2
+

2

r

d

dr
(1)

which has a number of physical and mathematical applications.

Localized long-lived pulsating states (pulsons, oscillons) in the
three-dimensional ϕ4 theory are of special interest within a wide
range of cosmological and high-energy physics contexts.

The earliest observations of repeated expansions and contractions
of spherically-symmetric vacuum domains in the ϕ4 equation were
obtained in:

Voronov, Kobzarev, Konyukhova, JETP Lett 22 290 (1975).
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Simulations

Computer simulations revealed the formation of long-lived pulsating
structures of large amplitude and nearly unchanging width

Bogolyubskii & Makhankov, JETP Lett 24 12 (1976)
Bogolyubskii & Makhankov, JETP Lett 25 107 (1977)

Example of numerical simulations of pulsating solution of Eq.(1)

:

E.V.Zemlyanaya, A.A.Bogolubskaya, N.V.Alexeeva, I.V.Barashenkov, M.V.Bashashin,

ϕ4 oscillons as standing waves in a ball: a numerical study



Introduction Boundary value problem Stability analysis Numerical results Summary

Aim & approach
With their permanent loss of energy to the second-harmonic
radiation, the oscillons are not exactly time-periodic.
These in�nite-space solutions can be studied via their
approximation by standing waves in a ball of a �nite radius.
Unlike oscillons, the standing waves are exactly periodic and
can be determined as solutions of a boundary-value problem
on the cylindrical surface.
Thus, our study aims an understanding of structure and
properties of the oscillon by examining the periodic standing
wave in a ball of �nite radius R .

� N.Alexeeva, I.Barashenkov, A.Bogolubskaya, E.Zemlyanaya // Phys Rev D
107 (2023) 076023;
� E.Zemlyanayaa, A.Bogolubskayaa, M.Bashashin, N.Alexeeva. Phys. Part.
Nucl. 55 No. 3 (2024) 505-508;
� E.Zemlyanaya, A.Bogolubskaya, N.Alexeeva M.Bashashin // Discrete &
Contin. Models and Appl. Comput. Sci. 32 No. 1 (2024) 106-111
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Boundary value problem

We consider the following boundary value problem:

ϕtt − ϕrr −
2

r
ϕr + 2ϕ− 3ϕ2 + ϕ3 = 0, (2a)

ϕr (0, t) = 0, ϕ(R, t) = 0, ϕ(r ,T ) = ϕ(r , 0). (2b)

Dependence of structure and properties of standing waves on
the radius R and period T is numerically investigated.

Numerical approach is based on numerical continuation and
stability analysis of solutions of a 2D boundary value problem
for the corresponding nonlinear PDE on the domain
[0,T ]×[0,R] where T � period of oscillations.

Stability analysis is based on the Floquet theory.
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Energy and frequency

The periodic standing waves are characterised by their energy

E = 4π

∫ R

0

(
ϕ2t
2

+
ϕ2r
2

+ ϕ2 − ϕ3 +
ϕ4

4

)
r2dr (3)

and frequency

ω =
2π

T
. (4)

If the solution with frequency ω does not change appreciably as R
is increased � in particular, if the energy (3) does not change � this
standing wave provides a fairly accurate approximation for the
periodic solution in an in�nite space.

We analyse the boundary-value problem (2) and construct the
E (R) and the E (ω/ω0) dependence (where ω0 =

√
2).
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Numerical approach

Letting τ = t/T and de�ning ψ(r , τ) = ϕ(r , t) yields the boundary
value problem at 2D domain [0,1]×[0,R] :

ψtt + T 2 · [−ψrr −
2

r
ψr + 2ψ − 3ψ2 + ψ3] = 0, (5a)

ψr (0, t) = ψ(R, t) = 0, ψ(r , 1) = ψ(r , 0). (5b)

Solutions of Eq.(5) were numerically continued in T and R to
construct the energy diagram.

For each values T and R the boundary-value problem (5) was
solved by means of the Newtonian iteration with the 4th order
�nite di�erence approximation of the derivatives.

Initial guess for the Newtonian process was calculated using
the results at two previous continuation steps.
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Stability analysis

To classify the stability of the resulting standing waves against
spherically-symmetric perturbations we considered the linearised
equation ytt − yrr −

2

r
yr − y + 3(ϕ− 1)2y = 0 (6)

with the boundary conditions yr (0, t) = y(R, t) = 0. We expand
y(r , t) in the sine Fourier series, substitute the expansion to Eq. (6)
and, after transformations, �nally obtain a system of 2N ODEs wrt
unknown time-dependent Fourier coe�cients:

u̇m = vm, v̇m + F = 0, (7)

F = (2+k2m)um−3
N∑

n=1

(Am−n−Am+n)un+
3

2

N∑
n=1

(Am−n−Am+n)un,

An, Bn are periodic functions of t, with period T :

An(t) =
2

R

∫ R

0

ϕ(r , t) cos(knr)dr , Bn(t) =
2

R

∫ R

0

ϕ2(r , t) cos(knr)dr
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Calculation of Floquet multiplyers

The system (7) is solved, numerically, 2N times with series of
varied initial conditions at the time-interval [0,T ] in order to form
a matrix MT . Eigenvalues µ = exp(λT ) of MT are the Floquet
multipliers. The solution ϕ(r , t) is deemed stable if all its Floquet
multipliers lie on the unit circle |ζ| = 1 and unstable if there are
multipliers outside the circle.

Floquet multipliers at the (Reµ,Imµ) plane. Stability case:
T=4.7206, instability case: T=5.025. Here R=100.
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Numerical approach, parallel implementation

Parallel MATLAB implementation:

The ode45 procedure for numerical solution of the initial value
problem (8) with the tolerance parameter value 10−7;

Cubic spline interpolation for Am±n and Bm±n coe�cients for
a set of time points.

Operator parfor to provide parallel numerical solution of 2N
Cauchy problems into available parallel threads, or �workers�.
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Energy-frequency diagram

The branch of ϕ comes from E=0 at Ω1.
Continuation produces curve E (ω/ω0) with a sequence of
spikes; number and positions of spikes are R-sensitive.
The lower envelope E -curve does not depend on R ; it has a
single minimum for all values of R , ωmin=ω/ω0=0.967,
Emin=42.74.
Stability occur only in case of frequencies lower ωmin.

Fragments of E (ω/ω0) diagram for R=100 and R=150:
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Two co-existing types of standing waves
1 Bessel-like waves without explicitly localized core, which are

branching o� the zero solution and decaying in proportion to
r−1 as r → R .

2 Nonlinear standing wave in a ball with an exponentially
localised pulsating core and a small-amplitude slowly decaying
second-harmonic tail.
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E (R) diagram at several values of T :
periodicity & stability properties
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Interconnection of branches in case T=4.8 (left);
Minimal E of stable waves vs T (right)

blue solid: �standard� wave
blue dashed: Bessel-like wave
magenta: stable intervals
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Summary

R-periodicity of structure and stability properties of ϕ4

standing waves is shown. Distance between E -peaks is
T -dependent.

Regions of stability on the E (R) diagram are localized at the
foot of the right slopes of the energy peaks.

Both slopes of the E (R) peak join the branch of Bessel-like
waves at the period-doubling bifurcation points.

Bessel-like waves are stable at the region between E = 0 and
the period-doubling bifurcation point.

One expects that for each ω/ω0 < ωmin, there is an
equidistant sequence of R where the standing waves are stable.

We obtained that minimal E at which the standing wave can
be stable increases with decreasing frequency. This hypothesis
needs to be checked at low frequencies.
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