Application of the KANTBP 3.1 program and its modifications to the study of some nuclear reactions processes

O. Chuluunbaatar^{1,2,3}, P. Wen⁴, A.A. Gusev^{1,5}, S.I. Vinitsky^{1,6}

¹ Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
 ² Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
 ³ Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
 ⁴ China Institute of Atomic Energy, Beijing, China
 ⁵ Dubna State University, Dubna, Russia
 ⁶ Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

Outline

- Statement of the problem: General BVP
- The program KANTBP 3.1
- Application in nuclear physics
 - Fusion cross sections with real potential and IWBC
 - ► Fusion cross sections with complex potential and regular BC
- Conclusions

Statement of the problem: General BVP

The multichannel scattering problem on the whole interval $z \in (-\infty, \infty)$

$$\left(-\mathbf{I}\frac{d^2}{dz^2} + \mathbf{U}(z) + \frac{\mathbf{Q}(z)}{dz} + \frac{d\mathbf{Q}(z)}{dz} - 2E\mathbf{I}\right)\chi^{(i)}(z) = 0.$$
 (1)

The asymptotic form of the coefficients at $z=z_\pm \to \pm \infty$

Let $\mathbf{Q}(z)=0$, and the $\mathbf{V}(z)$ matrix is constant or weakly dependent on the variable z in the vicinity of the asymptotic regions $z\leq z_{\min}$ and/or $z\geq z_{\max}$.

Matrix-solutions $\Phi_{\nu}(z)$:

$$\Phi_{\nu}(z) = \begin{cases}
\begin{cases}
\mathbf{Y}^{(+)}(z)\mathbf{T}_{\nu}, & z \geq z_{\text{max}}, \\
\mathbf{X}^{(+)}(z) + \mathbf{X}^{(-)}(z)\mathbf{R}_{\nu}, & z \leq z_{\text{min}}, \\
\mathbf{Y}^{(-)}(z) + \mathbf{Y}^{(+)}(z)\mathbf{R}_{\nu}, & z \geq z_{\text{max}}, \\
\mathbf{X}^{(-)}(z)\mathbf{T}_{\nu}, & z \leq z_{\text{min}},
\end{cases} \quad \nu = \leftarrow,$$
(2)

where \mathbf{R}_{\to} of the dimension $N_o^L \times N_o^L$ and \mathbf{R}_{\leftarrow} of the dimension $N_o^R \times N_o^R$ are the reflection matrices, \mathbf{T}_{\to} of the dimension $N_o^R \times N_o^L$ and \mathbf{T}_{\leftarrow} of dimension $N_o^L \times N_o^R$ are the transmission matrices.

Components of asymptotic boundary conditions for constant matrices

The asymptotic rectangle-matrix functions $\mathbf{X}^{(\pm)}(z)$ and $\mathbf{Y}^{(\pm)}(z)$

$$\mathbf{X}_{i_o}^{(\pm)}(z) \rightarrow \frac{\exp\left(\pm \imath p_{i_o}^L z\right)}{\sqrt{p_{i_o}^L}} \mathbf{\Psi}_{i_o}^L, \quad p_{i_o}^L = \sqrt{2E - \lambda_{i_o}^L}, \quad z \leq z_{\min},$$

$$\mathbf{Y}_{i_o}^{(\pm)}(z) \rightarrow \frac{\exp\left(\pm \imath p_{i_o}^R z\right)}{\sqrt{p_{i_o}^R}} \mathbf{\Psi}_{i_o}^R, \quad p_{i_o}^R = \sqrt{2E - \lambda_{i_o}^R}, \quad z \geq z_{\max}.$$
(3)

Here $\lambda_i^{L,R}$ and $\boldsymbol{\Psi}_i^{L,R} = \{\boldsymbol{\Psi}_{1i}^{L,R}, \dots, \boldsymbol{\Psi}_{Ni}^{L,R}\}^T$ are the solutions of algebraic eigenvalue problems with the matrices $\boldsymbol{V}^L = V(z_{\min})$ and $\boldsymbol{V}^R = V(z_{\max})$ of the dimension $N \times N$ for entangled channels

$$\mathbf{V}^{L,R}\mathbf{\Psi}_{i}^{L,R} = \lambda_{i}^{L,R}\mathbf{\Psi}_{i}^{L,R}, \quad (\mathbf{\Psi}_{i}^{L,R})^{\mathsf{T}}\mathbf{\Psi}_{j}^{L,R} = \delta_{ij}. \tag{4}$$

The closed channels asymptotic vector solutions at $\lambda_{i_c}^{L,R} \geq 2E$, $i = i_c = N_o^{L,R} + 1, \dots, N$, are as follows:

$$\mathbf{X}_{i_{c}}^{(-)}(z) \to \exp\left(+\sqrt{\lambda_{i_{c}}^{L} - 2E}z\right) \mathbf{\Psi}_{i_{c}}^{L}, \quad z \le z_{\min}, \quad v = \leftarrow,$$

$$\mathbf{Y}_{i_{c}}^{(+)}(z) \to \exp\left(-\sqrt{\lambda_{i_{c}}^{R} - 2E}z\right) \mathbf{\Psi}_{i_{c}}^{R}, \quad z \ge z_{\max}, \quad v = \to.$$
(5)

The asymptotic boundary conditions for Coulomb potential

The asymptotic of V(z) and Q(z) matrices

$$V_{ij}(z) = \left(\epsilon_j^L + \frac{2Z_j^L}{z}\right)\delta_{ij} + O(z^{-l}), l > 1, \quad Q_{ij}(z) = O(z^{-l}), l \geq 1, z \leq z_{\min}, (6)$$

and/or

$$V_{ij}(z) = \left(\epsilon_j^R + \frac{2Z_j^R}{z}\right)\delta_{ij} + O(z^{-l}), l > 1, \quad Q_{ij}(z) = O(z^{-l}), l \geq 1, z \geq z_{\text{max}}.$$
 (7)

We put $V_{ij}^L = \epsilon_i^L \delta_{ij}$ and/or $V_{ij}^R = \epsilon_i^R \delta_{ij}$,

$$\mathbf{V}^{L,R}\mathbf{\Psi}_{i}^{L,R} = \lambda_{i}^{L,R}\mathbf{\Psi}_{i}^{L,R}, \quad (\mathbf{\Psi}_{i}^{L,R})^{T}\mathbf{\Psi}_{j}^{L,R} = \delta_{ij},$$
(8)

and the eigenvalues λ_i^L and/or λ_i^R are ordered in ascending order of the thresholds ϵ_i^L and/or $\boldsymbol{\psi}_i^R$, and the corresponding eigenvectors $\boldsymbol{\Psi}_i^L$ and/or $\boldsymbol{\Psi}_i^R$ are columns of the permutated unit matrix \boldsymbol{I} .

The asymptotic boundary conditions for non constant matrices

The open and closed channel asymptotic vector solutions have the form:

$$\mathbf{X}_{i_o}^{(\pm)}(z) \rightarrow \frac{\exp\left(\pm i \left(p_{i_o}^L z - \frac{Z_{i_o}^L}{p_{i_o}} \ln(2p_{i_o}^L|z|)\right)\right)}{\sqrt{p_{i_o}^L}} \mathbf{\Psi}_{i_o}^L, \quad p_{i_o}^L = \sqrt{2E - \lambda_{i_o}^L}, \quad z \leq z_{\min},$$

$$\mathbf{X}_{i_c}^{(-)}(z) \rightarrow \exp\left(+\left(p_{i_c}^L z + \frac{Z_{i_o}^L}{p_{i_c}} \ln(2p_{i_c}^L|z|)\right)\right) \mathbf{\Psi}_{i_c}^L, \quad p_{i_c}^L = \sqrt{\lambda_{i_c}^L - 2E}, \tag{9}$$

and/or

$$\mathbf{Y}_{i_{o}}^{(\pm)}(z) \to \frac{\exp\left(\pm i \left(p_{i_{o}}^{R}z - \frac{Z_{j}^{R}}{p_{i_{o}}}\ln(2p_{i_{o}}^{R}|z|)\right)\right)}{\sqrt{p_{i_{o}}^{R}}} \mathbf{\Psi}_{i_{o}}^{R}, \quad p_{i_{o}}^{R} = \sqrt{2E - \lambda_{i_{o}}^{R}}, \quad z \ge z_{\max},$$

$$\mathbf{Y}_{i_{c}}^{(+)}(z) \to \exp\left(-\left(p_{i_{c}}^{R}z + \frac{Z_{j}^{R}}{p_{i_{c}}}\ln(2p_{i_{c}}^{R}|z|)\right)\right) \mathbf{\Psi}_{i_{c}}^{R}, \quad p_{i_{c}}^{R} = \sqrt{\lambda_{i_{c}}^{R} - 2E}, \tag{10}$$

where j is the element number of the eigenvector Ψ_i^L and/or Ψ_i^R , which is 1.

The program KANTBP 3.1 – KANTorovich Boundary Problem

Methods

BVP is solved on non-uniform grids using FEM and R-matrix theory. The KANTBP 3.1 program has been created.

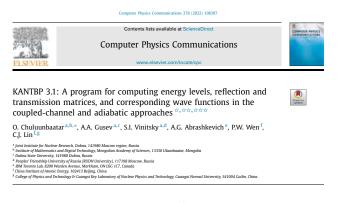


Figure 1:

Sub-barrier heavy ion fusion reaction ^a

^aP.W. Wen, O. Chuluunbaatar, A.A. Gusev, et al, Near-barrier heavy-ion fusion: Role of boundary conditions in coupling of channels, Phys. Rev. C 101,014618 (2020)

$$\sum_{n'=1}^{N} \left(\left(-\frac{d^2}{dr^2} - \tilde{E} \right) \delta_{nn'} + U_{nn'}(r) \right) \psi_{n'n_o}(r) = 0, \quad r \in (r_{\min}, r_{\max}).$$
 (11)

$$U_{nn'}(r) = \frac{2\mu}{\hbar^2} \left[\left(\frac{I(I+1)\hbar^2}{2\mu r^2} + V_N^{(0)}(r) + \frac{Z_P Z_T e^2}{r} + \epsilon_n \right) \delta_{nn'} + V_{nn'}(r) \right]. \tag{12}$$

Here $\tilde{E}=2\mu E/\hbar^2$ is the center-of-mass energy, $\mu=A_PA_T/(A_P+A_T)$ is the reduced mass of the target and the projectile with the masses A_T and A_P and the charges Z_T and Z_P , respectively. $V_{nn'}(r)$ are matrix elements of Coulomb and nuclear $V_N^{(0)}(r)$ (Woods-Saxon potential derived from Akyüz-Winther parameterization) potentials, $U_{nn'}(r\to\infty)=2\mu\epsilon_n/\hbar^2\delta_{nn'}$.

Fusion cross sections:^a IWBC at $r_{min} \gg 0$

^aK. Hagino, N. Rowley, A.T. Kruppa, CCFULL..., Comput. Phys. Commun. 123 (1999) 143.

$$V_{l}(r) = \frac{l(l+1)}{r^{2}} + \frac{2\mu}{\hbar^{2}} \left(V_{N}^{(0)}(r) + \frac{Z_{P}Z_{T}e^{2}}{r} \right),$$

$$\tilde{E} > V_{l}^{\min} = V_{l}(r_{\min}^{l})$$

$$P_{I} = \frac{\pi}{\tilde{E}} (2I + 1) \sum_{m=1}^{N_{o}^{L}} |\mathbf{T}_{m1}^{(I)}|^{2}.$$

 $\sigma_f(E) = \sum_{l=1}^{l_{\mathsf{max}}(E)} P_l,$

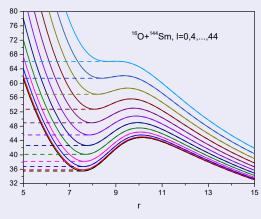


Figure 2:

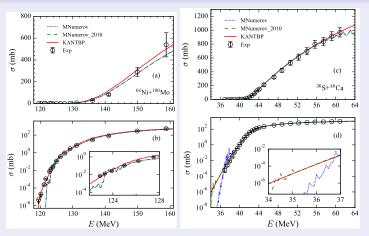


Figure 3: The modified Numerov method in CCFULL (dotted blue line), the improved Numerov method in the CCFULL (dashed green line) and KANTBP (solid red line). $N_o^R=27$

Comparison of the left boundary conditions

CCFULL:
$$X_{ji_o}^{(-)}(r_{\min}) = \exp(-\imath q_j(r_{\min})r)\delta_{ji_o}, q_j(r_{\min}) = \sqrt{\tilde{E} - U_{jj}(r_{\min})}$$
 (13)

KANTBP:
$$\mathbf{X}_{i_o}^{(-)}(r_{\min}) = \exp\left(-\imath p_{i_o}^L r_{\min}\right) \mathbf{\Psi}_{i_o}^L, \quad p_{i_o}^L = \sqrt{2E - \lambda_{i_o}^L},$$
 (14)

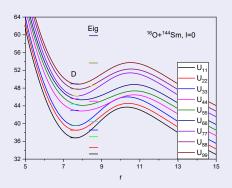


Figure 4: Lowest eigenvalues λ_m are smaller than lowest diagonal elements $U_{mm}(r_{min})$.

Fission reaction ⁴⁰Ca+²⁰⁸Pb leading to the formation of the nucleus ²⁴⁸No

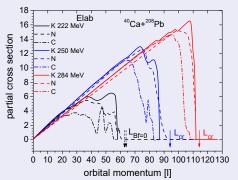


Figure 5: KANTBP (solid), NRV [http://nrv.jinr.ru/nrv] (dashed) and CCFULL (dash dotted).

PHYSICAL REVIEW C 105, 024617 (2022)

Experimental study of fast fission and quasifission in the ⁴⁰Ca + ²⁶⁸Pb reaction leading to the formation of the transfermium nucleus ²⁴⁸No

E. M. Kozulino, ^{1,2} G. N. Knyazheva, ^{1,2} A. A. Bogachevo, ^{1,4} V. Naihoo, ^{1,3} A. V. Karpovo, ^{1,2} I. M. Ikišo, ^{1,4} K. V. Nokivov, ^{1,2} Y. S. Makhamejanovo, ^{2,3} I. V. Pehelintsevo, ^{1,4} V. Pehelintsevo, ^{1,4} V. Pehelintsevo, ^{1,4} V. Pehelintsevo, ^{1,4} V. Verobiovi, ^{1,4} Flerov Laboratovo of Nuclear Raccinic, black in Interior & Nuclear Parison, Almany, Godo Raccinhama ^{1,4} Fernank Kaçalik National University, Almary, GOSIO Kaccinhama ^{1,4} Department of Physics, Indian Institute of Technology, Ropur, Ruspauge, Panjah 140001, India ^{1,4} (B. Received 10 December 2012; excepted 10 February 2012; published 24 February 2022)

The capture cross sections, partial cross sections, and critical angular momenta $L_{\rm cr}$ were calculated using the code of coupling channel model KANTBP [28]. The advantage of this code, compared to the widely used codes of NRV [29,30] and CCFULL [31], is the careful treating of boundary conditions for solving the set of coupled Schrödinger equations. It allows one to keep a high accuracy of calculations that take into account a large number of coupled channels.

Figure 6:

Optical potentials and regular BC: $\psi_{nm}(r) \sim r^{l+1}$ at $r_{min} = 0$

$$V_{l}(r) = \frac{l(l+1)}{r^{2}}$$

$$+ \frac{2\mu}{\hbar^{2}} \left(\Re \tilde{V}_{N}^{(0)}(r) + \frac{Z_{P}Z_{T}e^{2}}{r} \right),$$

$$\tilde{E} > V_{l}^{\min} = V_{l}(r_{\min}^{l})$$

$$\tilde{V}_{N}^{(0)}(r) = V_{N}^{(0)}(r) + i W_{N}^{(0)}(r)$$
 (15)

$$\sigma_f(E) = \sum_{l=1}^{I_{\sf max}(E)} P_l,$$

$$P_{l} = \frac{\pi}{\tilde{E}}(2l+1)\sum_{m=1}^{N_{o}^{L}}(1-|\mathbf{R}_{m1}^{(l)}|^{2}),$$

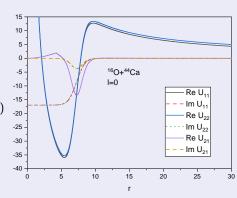
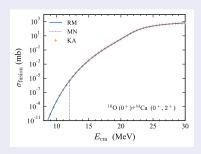


Figure 7:

(16)

Cross sections of light reaction ¹⁶O+⁴⁴Ca



 $\begin{array}{c} 10^{1} \\ 10^{0} \\ 10^{-1} \\ \hline \\ \frac{1}{10^{0}} \\ 10^{-1} \\ \hline \\ \frac{1}{10^{0}} \\ 10^{-1} \\ 10^{-1} \\ \hline \\ 10^{-1} \\ 10^{-1} \\ \hline \\ 10^{-1} \\ 10^{-1} \\ \hline \\ 10^{-1} \\ 1$

Figure 8: Fusion cross sections of $^{16}O+^{44}Ca$.

Figure 9: The back-angle QE cross section relative to the Rutherford cross section as a function of energy for $^{16}\text{O}+^{44}\text{Ca}$.

R-matrix - P. Descouvement, Comput. Phys. Commun. 200 (2016) 199.

Cross sections of heavy reaction ⁴⁸Ca+²⁴⁸Cm

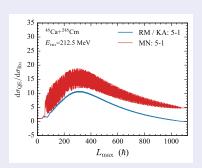


Figure 10: The back-angle quasi-elastic cross section relative to the Rutherford cross section as a function of $L_{\rm max}$ at deep sub-barrier energy $E_{\rm cm}=172$ MeV.

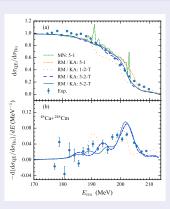


Figure 11: Upper panel: the back-angle QE cross section relative to the Rutherford cross section. Lower panel: the corresponding barrier distributions. The extra symbol '-T' denotes the extra consideration of the transfer channels in the CC calculation.

The Numerov method requires two initial conditions

$$\phi(r_{i}) = \left(1 - \frac{h^{2}}{12}\mathbf{A}(r_{i})\right)\psi(r_{i})$$

$$\phi(r_{i+1}) = \left(\left(\frac{h^{2}}{\sqrt{12}}\mathbf{A}(r_{i}) + \sqrt{3}\right)^{2} - 1\right)\phi(r_{i}) - \phi(r_{i-1})$$

$$A_{nn'}(r) = \frac{2\mu}{\hbar^{2}}\left[\left(\frac{l(l+1)\hbar^{2}}{2\mu r^{2}} + V_{N}^{(0)}(r) + \frac{Z_{P}Z_{T}e^{2}}{r} + \epsilon_{n} - E\right)\delta_{nn'} + V_{nn'}(r)\right]$$

$$r_{i+1} = r_{i} + h$$
(17)

Numerov method in CCFULL

```
c integration of the io-th channel wave function from rmin = 0
    do 15 io=1,nlevel
      do 200 j1=1,nlevel
        psi0(j1)=0.d0
        psi1(j1)=0.d0
    continue
200
c initial conditions
     psi1(io)=1.d-6
      do 91 i0=1,nlevel
        xi1(i0,io)=(1.d0-fac/12.d0*(v(rmin+dr)-ai*w(rmin+dr)-e))*psi1(i0)
        do 92 ic=1,nlevel
          xi1(i0,io)=xi1(i0,io)
                    -fac/12.d0*(cpot(i0,ic,1)-ai*cpotw(i0,ic,1))*psi1(ic)
92
        continue
91
      continue
```

15 continue

Numerov method in CCFULL

```
c integration of the io-th channel wave function from rmin = 0
   do 15 io=1,nlevel
     do 200 j1=1,nlevel
       psi0(j1)=0.d0
       psi1(j1)=0.d0
    continue
200
c initial conditions
     psi1(io)=1.d-6
     do 91 i0=1,nlevel
       xi1(i0,io)=(1.d0-fac/12.d0*(v(rmin+dr)-ai*w(rmin+dr)-e))*psi1(i0)
        do 92 ic=1,nlevel
         xi1(i0,io)=xi1(i0,io)
                    -fac/12.d0*(cpot(i0,ic,1)-ai*cpotw(i0,ic,1))*psi1(ic)
92
        continue
```

Initial conditions in CCFULL:

continue 15 continue

91

$$\psi_{ij}(0) = 0$$
 is correct but $\psi_{ij}(h) = 10^{-6} \delta_{ij}$ is not correct (18)

Conclusions

- 1. A FORTRAN program for calculating energy values, reflection and transmission matrices, and corresponding wave functions in a coupled-channel approximation of the adiabatic approach are presented in Computer Physics Communications Program Library.
- 2. We found that the R-matrix method and the finite element method (KANTBP) are more stable for solving the multichannel scattering problem for the coupled channels equations compared to the Numerov method.
- 3. The programs KANTBP and R-matrix excellently confirm each other and outperform the CCFULL program.

Thank you for attention!