О стратегии развития IT-технологий и научного компьютинга в ОИЯИ

Кореньков Владимир Васильевич

директор ЛИТ ОИЯИ

НТС ЛИТ, 6 июня 2019

Программы в области развития цифровых технологий

Согласно федеральному проекту «Цифровые технологии», к девяти прорывным направлениям были отнесены: нейротехнологии и искусственный интеллект, технологии виртуальной и дополненной реальности, компоненты робототехники и сенсорики, технологии беспроводной связи, большие данные, системы распределенного реестра (блокчейн), промышленный интернет, новые производственные технологии и квантовые технологии.

- Центры Tier1 и Tier2 российского сегмента Глобальной вычислительной системы Грид БАК
- Прогноз развития суперкомпьютерных и грид-технологий в Российской Федерации на долгосрочный период
- Концепции создания и обеспечения функционирования национальной суперкомпьютерной инфраструктуры.

The Worldwide LHC Computing Grid

Tier-0 (CERN):
data recording,
reconstruction and
distribution

Tier-1: permanent storage, re-processing, analysis

Tier-2: Simulation, end-user analysis

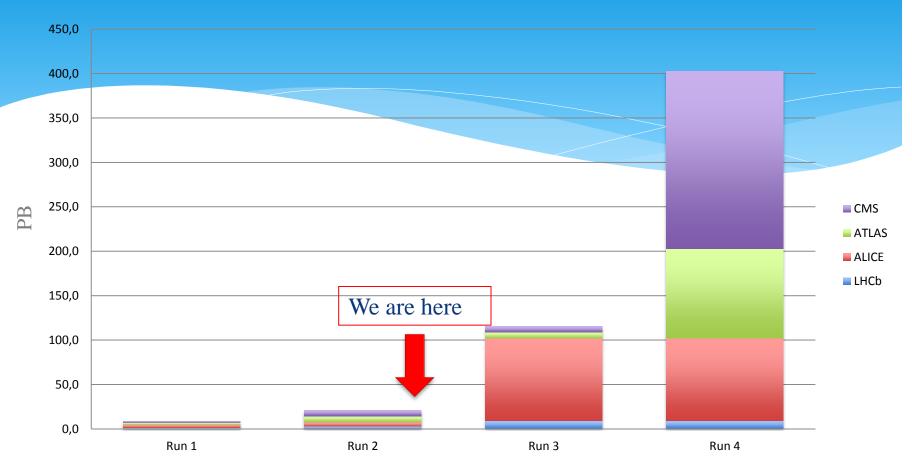
Tier-2 sites (about 160) Tier-1 sites Dubna RAL

nearly 180 sites, 45 countries

1 000 000 cores

1 EB of storage

> 3 million jobs/day

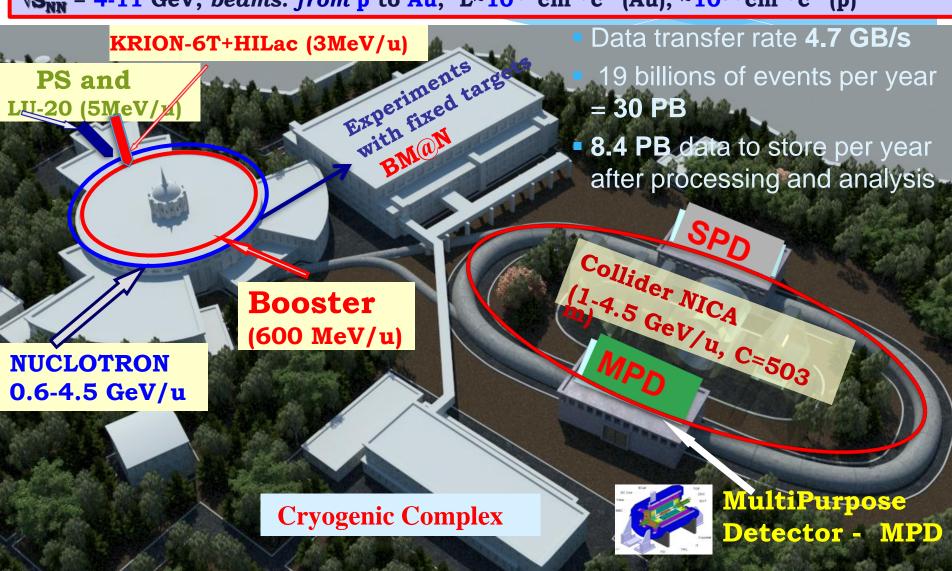

10-100 Gb links

WLCG:

An International collaboration to distribute and analyse LHC data

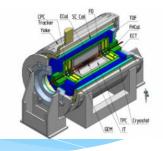
Integrates computer centres worldwide that provide computing and storage resource into a single infrastructure accessible by all LHC physicists

Data: Outlook for HL-LHC

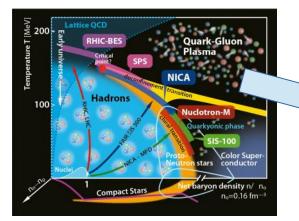


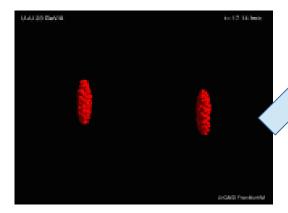
- Very rough estimate of a new RAW data per year of running using a simple extrapolation of current data volume scaled by the output rates.
 - To be added: derived data (ESD, AOD), simulation, user data...

NICA Complex: New era in the hot dense matter science

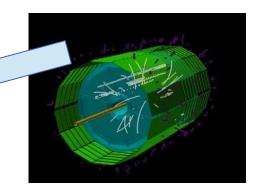

Collider basic parameters:

 $\sqrt{S_{NN}}$ = 4-11 GeV; beams: from p to Au; L~10²⁷ cm⁻² c⁻¹ (Au), ~10³² cm⁻² c⁻¹ (p)

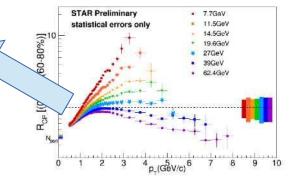



Вызовы компьютинга для NICA

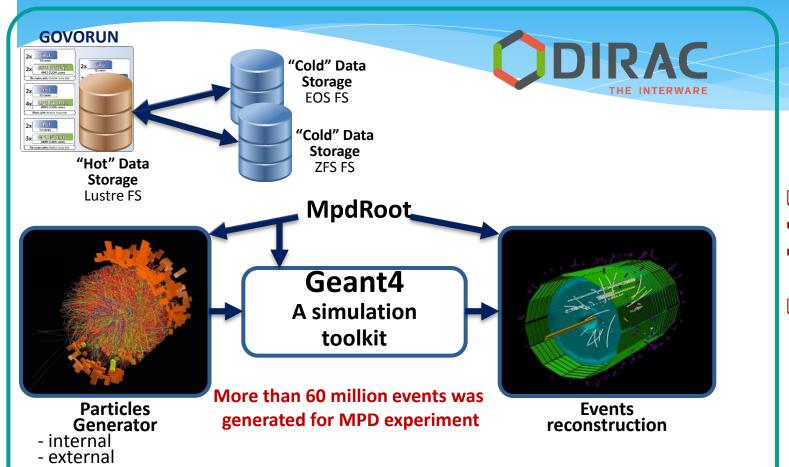
Эксперимент MPD

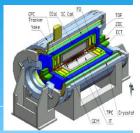


Фазовая диаграмма КХД

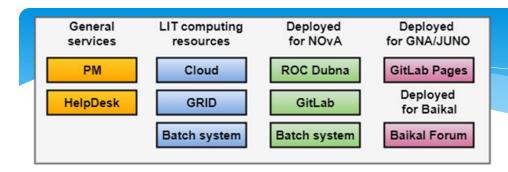


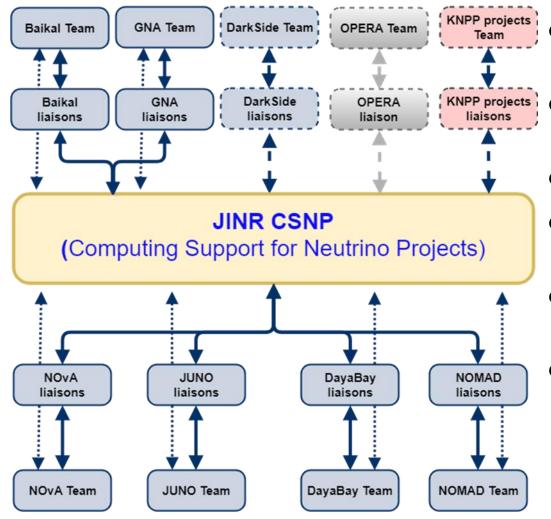
Моделирование


Реконструкция событий

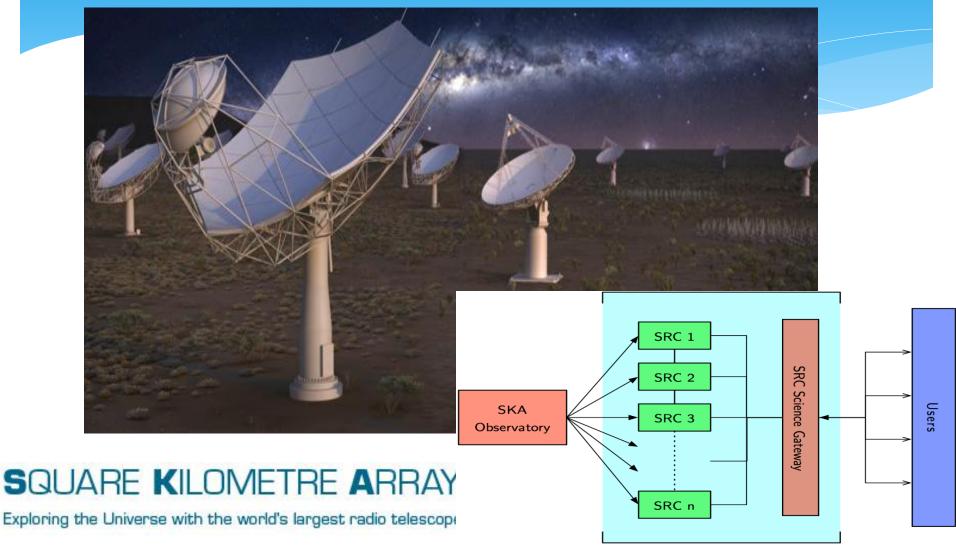


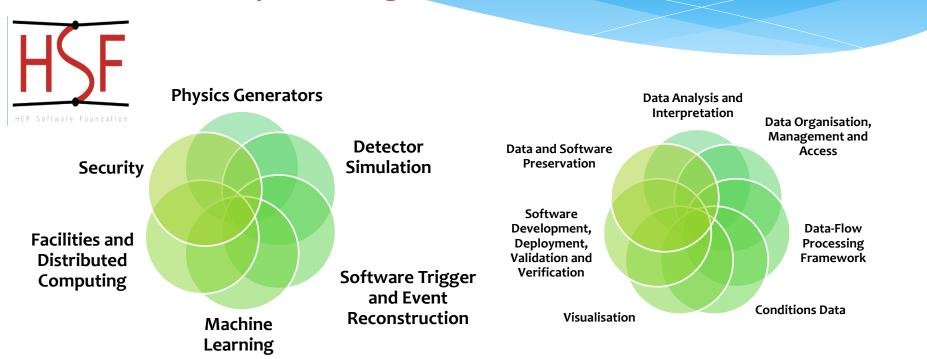
Физический анализ

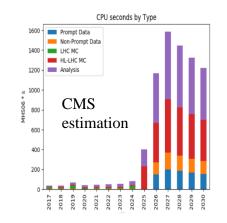

Computing for NICA Megaproject on GOVORUN

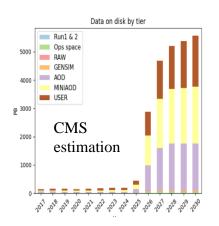


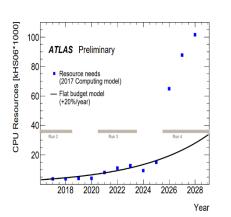
- Modeling:
- physical events
- receiving data from detectors.
- ☐ Data storage organization.

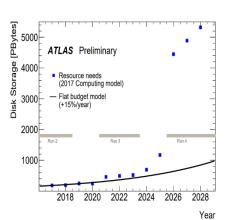

CSNP Group


- Supports a set of common IT services
- Supports a number of computing infrastructures
- Provides trainings
- Helps physicists organize their computing
- Deploys and supports additional IT services on demand.
- Helps with computer hardware procurement


Square Kilometre Array SKA Regional Centers



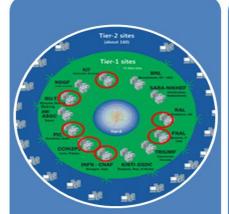



CHALLENGE: R&D of software to acquire, manage, process, and analyse the big amounts of data to be recorded

CHALLENGES: distributed data storage evolution: DATALAKES

GOAL:

- •to provide a computing infrastructure to the experiments and the community to store and analyze data,
- •to achieve storage consolidation where geographically distributed storage centers (potentially deploying different storage technologies) are operated and accessed as a single entity.


EOS - a CERN open-source storage software solution to manage multi PB storage.

XRootD - core of the implementation framework providing a feature-rich remote access protocol.

Improvement of already existing production quality Data Management services.

Scalable technologies for federating storage resources and managing data in highly distributed computing environments.

Multifunctional Information and Computing Complex Main components

Grid-Tier1: 10688 cores 8.3 PB disk 11 PB tape

Grid-Tier2 CICC: 4128 cores 2.7 PB disk

Cloud: 1572 CPU 8.142 TB RAM 1.1 PB disk

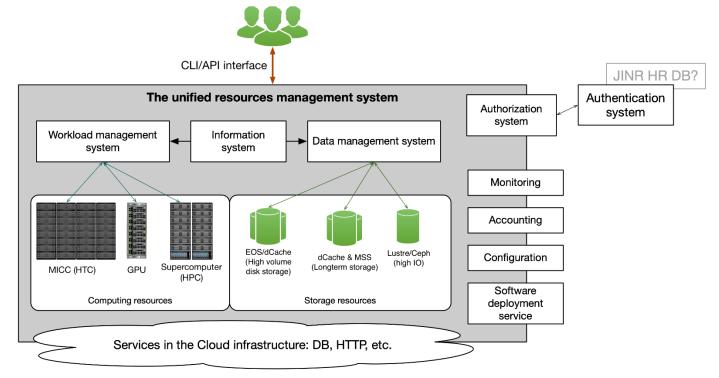
HPC Govorun
Peak ~0.5 Pflops
HybriLIT:
~70 Tflops

NICA off-line cluster and storage system

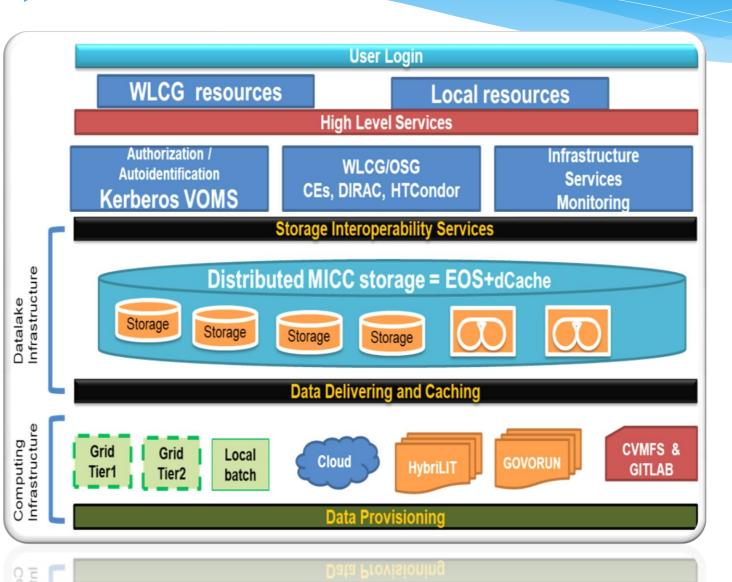
DATALAKE

3740TB

a≘os


Network infrastructure: LAN: 100 Gbps WAN: 2x100 Gbp

Engineering infrastructure


Унифицированная система управления ресурсами МИВК

Основными назначениями унифицированной системы управления ресурсами являются:

- предоставление возможности обработки больших объемов данных;
- -обеспечение возможности организации массивных вычислительных задач;
- -оптимизация эффективности использования вычислительных ресурсов и ресурсов хранения;
- -эффективный мониторинг загрузки ресурсов;
- -консолидация учета использования ресурсов;
- обеспечение единого интерфейса доступа к ресурсам.

JINR in Data(Lakes)

We start to develop the common EOS based data storage for MICC components.

Total space: 3740TB User space: 1870TB (2

replicas)

LIT participates in 48 projects of 30 JINR topics of the **2017 Topical Plan of JINR**

04-4-1122-2015/2017 [1]

Leaders: S.A. Kulikov, V.I. Prikhodko

03-4-1128-2017/2019 [1]

Leader: V.N. Shvetsov,

Deputies: Yu.N. Kopatch, E.V. Lychagin,

P.V. Sedyshev

04-4-1121-2015/2017 [1]

Leaders: D.P. Kozlenko, V.L. Aksenov.

FLNP

A.M. Balagurov

Experimental

Physics

02-2-1099-2010/2018 [1]

Leaders: D.V. Naumov, A.G. Olshevskiy

02-2-1125-2015/2017 [2]

Leader: L.G. Tkatchev, Deputy: V.M. Grebenyuk

03-2-1101-2010/2017 [2]

Leader: A.V. Kulikov, Deputy: Z.Tsamalaidze

02-2-1124-2015/2017 [1]

Leader: V.V. Glagolev, Scientific leader: J.A. Budagov

03-2-1102-2010/2018 [2]

Leaders: G.A. Karamysheva, S.L. Yakovenko, Scientific leader: L.M. Onischenko

02-2-1123-2015/2019 [1]

Leader: A.S. Zhemchugov

Information

Theoretical Physics

Physics

BLTP

01-3-1113-2014/2018 [2] Leaders: D.I. Kazakov. O.V. Tervaev. A.B. Arbuzov

01-3-1114-2014/2018 [2]

Leaders: V.V. Voronov. A.I. Vdovin. N.V. Antonenko

01-3-1115-2014/2018 [2]

Leaders: V.A. Osipov, A.M. Povolotskii

01-3-1116-2014/2018 [1]

Leaders: A.P. Isaev. A.S. Sorin Deputy: S.O. Krivonos Scientific leader: A.T. Filippov

01-3-1117-2014/2018 [1]

Leaders: V.V. Voronov, A.S. Sorin Scientific leader: A.T. Filippov

Technologies

Computational

ШТ

05-6-1118-2014/2019

Information and Computing

05-6-1119-2014/2019

Infrastructure of JINR

Methods, Algorithms and Software for Modeling Physical Systems, Mathematical Processing and **Analysis of Experimental Data** 02-1-1097-2010/2018 [2]

VBLHEP

Leader: A.D. Kovalenko, Deputies: N.M. Piskunov, V.P. Ladygin, M. Finger (Jr.), R.A. Shindin

02-1-1088-2009/2019 [2]

Leader: A.S. Vodopyanov

02-1-1106-2011/2019 [2]

Leader: A. Malakhov, V. Ivanov

02-0-1066-2007/2020 [4]

Leaders: R. Lednicky, Yu.A. Panebratsev

FLNR

DLNP

04-5-1131-2017/2021 [1]

Leaders: S.N. Dmitriev, P.Yu. Apel

03-0-1129-2017/2021 [1]

Leaders: G.G. Gulbekyan, S.N. Dmitriev, M.G. Itkis

Scientific leader: Yu.Ts. Oganessian

03-5-1130-2017/2021 [1] Leaders: M.G. Itkis

Scientific leader: Yu.Ts. Oganessian

02-0-1065-2007/2019 [4]

Leaders: A.S. Sorin, V.D. Kekelidze, G.V. Trubnikov Deputies A.D. Kovalenko, I.N. Meshkov

02-0-1085-2009/2019 [1]

Leader: A.P. Nagaytsev, Scientific leader: I.A. Savin

02-0-1083-2009/2019 [5]

Leader: A. Zarubin, Scientific leader: I.A. Golutvin

02-0-1081-2009/2019 [1]

Leader: V.A. Bednyakov

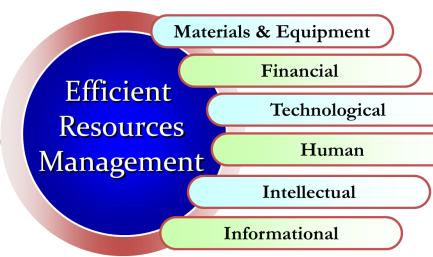
Deputies: E.V. Khramov, A.P. Cheplakov

02-0-1108-2011/2017 [1]

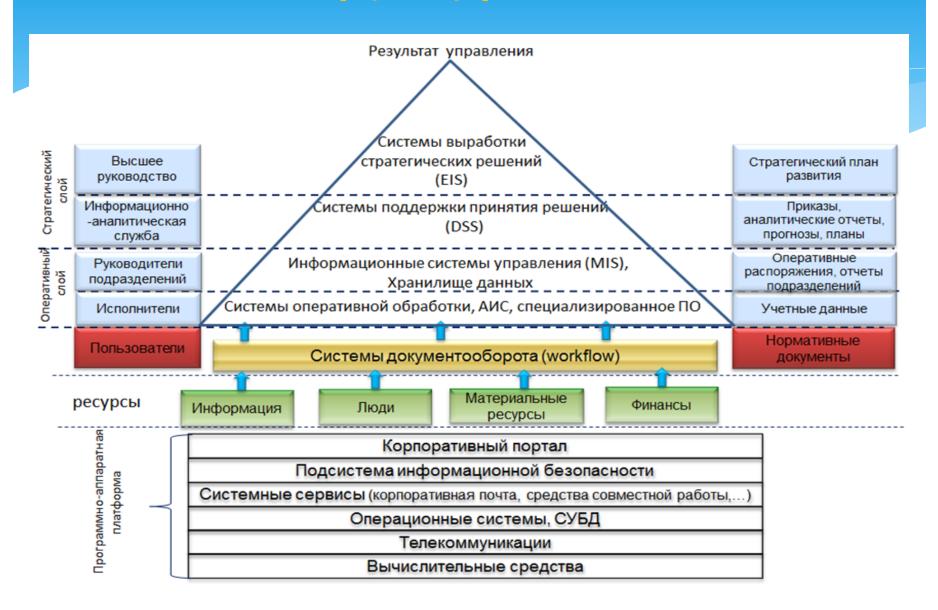
Leader: G.D. Alexeev

Deputies: A.N. Skachkova, A.S. Vodopyanov

05-8-1037-2001/2019 [1]


Leader: N.A. Russakovich

06-0-1120-2014/2018 [1]


Leaders: V.A. Matveev, S.Z. Pakuliak

The JINR corporative information system

- General 1C:Enterprise platform intended for automation of everyday tasks of economic and management activity,
- APT EVM system (Activity Planning Tool Earned Value Management) for NICA and future projects management,
- Electronic document handling system EDH «Dubna»
- JINR Document Server electronic open archiverepository of scientific publications and documents,
- JINR and JINR Member-states access to e-library,
- □ PIN JINR staff personal information,
- JINR portal

Структура КИС

Международная школа по информационным технологиям«Аналитика Больших данных»

Цель Международной школы по информационным технологиям «Аналитика больших данных»— подготовка высококвалифицированных ИТ-специалистов в области Data Science, умеющих формулировать и решать научно-практические задачи с использованием аналитики Больших данных. Программа подготовки будет ориентирована на приобретение глубоких знаний в области математической статистики, машинного обучения, программирования, методов и технологий обработки и анализа данных, понимания бизнес-запросов и задач своей отрасли.

Среди основных направлений подготовки отдельное внимание будет уделено развитию модели компьютинга, программной платформы системы сбора, хранения, обработки и анализа данных экспериментов на установках класса мегасайенс (NICA, PIC, LHC, FAIR, SKA и др.).

Концепция развития IT-технологий и научного компьютинга в ОИЯИ (до 2030 г.)

Концепция развития IT-технологий и научного компьютинга нацелена на обеспечение решения стратегических задач стоящих перед ОИЯИ посредством внедрения и развития целого спектра новейших ITрешений, интегрированных в единую информационно-вычислительную среду -научную ІТ-экосистему, объединяющую множество различных технологических решений, концепций и методик.

Научные исследования в развитии высокопроизводительных вычислений и суперкомпьютерных технологий. Ключевые задачи

ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ИССЛЕДОВАНИЯ:

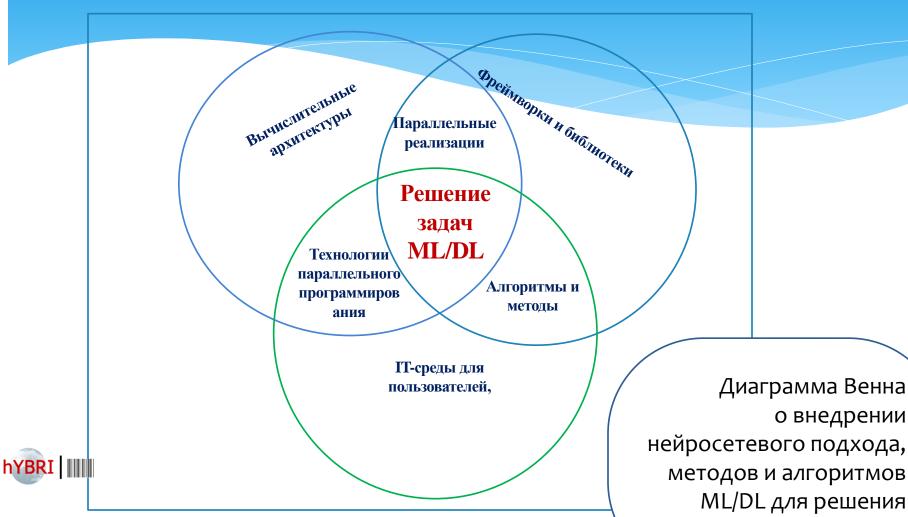
- Квантовых суперкомпьютеры и квантовые вычисления
- Фотонные вычислители
- Спецпроцессоры
- программная платформа суперкомпьютерного моделирования,
 цифровых испытаний и прогнозирования сложных технических систем
- Фундаментальные поисковые исследования в развитии физикоматематических моделей и математических методов для эксафлопсных вычислений (суперкомпьютерные двойники)
- Супер-ЭВМ эксафлопсного класса (научно-технические решения, прикладное и системное программное обеспечение и другие)

Сверхбыстрая система хранения данных (ССХД)

Основными характеристиками ССХД являются:

- 1. Сверхвысокая производительность системы, обеспечивающая пропускную способность записи и чтения данных в сотни гигабайт в секунду при объемах системы хранения в 1-5 петабайт (больше миллиона файловых операций в секунду).
- 2. Возможность линейного наращивания производительности (скорости работы с данными) так и объёма хранилища на несколько порядков без изменения принципов архитектурного построения системы.
- 3. Гиперконвергентность и программно-определяемая архитектура ССХД позволяет обеспечить максимальную гибкость конфигураций системы хранения данных.
- 4. Реализация ССХД на базе технологии прямого жидкостного охлаждения российской компании РСК позволяет разместить более 900 сверхбыстрых дисков в стандартной монтажной стойке с общим объемом 3,6-7ПБ и скоростью чтения/записи около 1ТБ/с.

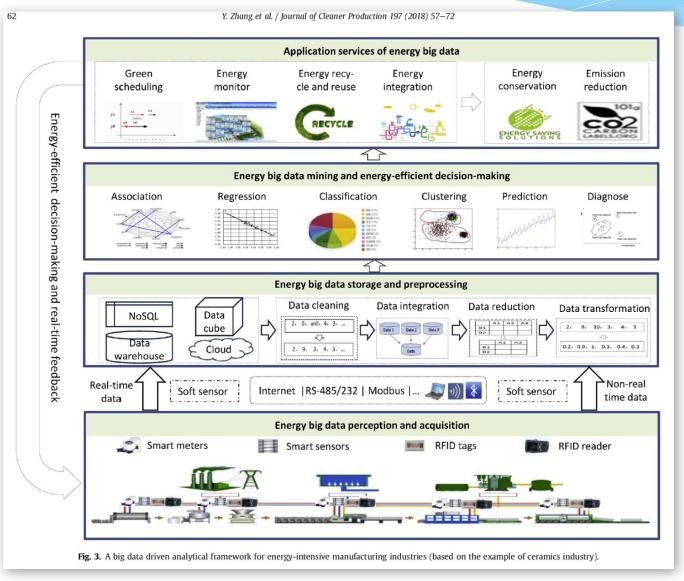
Модель DOMA


В последнее время тенденция использования и работы с системами хранения данных сместилась от простого подхода, разделяющего организацию, управление, доступ и его иерархичность к модели DOMA (Data Organisation, Management and Access), комбинирующей все аспекты. Такая модель позволяет создавать более гибкую систему работы с данными, учитывающую как текущие сетевые возможности, в том числе – программную ориентированность сетевых компонентов, так и раскрывающую потенциал оптимизации доступа, размещения и управления данными, поскольку DOMA учитывает кросс-системные знания и возможности взаимного обмена информацией о процессах, протекающих внутри систем.

Квантовый компьютинг и квантовая информатика

Квантовый компьютинг, который развивается в последние годы ускоренными темпами, предлагает новые возможности для обработки данных HL-LHC (ЦЕРН) средствами машинного обучения и, в особенности, глубокого обучения. Скорость роста числа кубитов, характеризующего максимально возможный объем входных данных для квантового компьютера явно выше линейной, что показывает ускоренный прогресс в создании оборудования квантовых компьютеров.

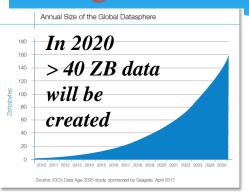
С не меньшей скоростью развивается и программное обеспечение квантовых компьютеров. Созданием и развитием квантовых компьютеров интенсивно занимаются такие ИТ гиганты, как IBM, Google, Microsoft, Intel, каждый из которых разрабатывает свою оригинальную технологию создания оборудования квантового компьютера и оригинальное программное обеспечение, включающее интерфейс пользователя.


Внедрение нейросетевого подхода, методов и алгоритмов ML/DL

прикладных задач.

Тенденции развития Аналитики Больших данных

Полный цикл Больших данных. Платформы

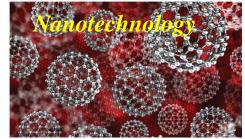

Приложения, сервисы, мониторы, системы принятия решений, ситуационные центры

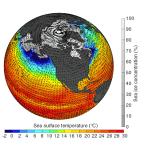
Анализ – кластеризация, классификация, ассоциация, визуализация, интеллектуальный анализ, моделирование, прогноз.

Первичная обработка, размещение, интеграция, фильтрация, сжатие, обогащение, преобразование

Высокоскоростной автоматизированный сбор и передача разнообразных данных от измерительных приборов, камер наблюдения, умных датчиков, устройств чтения радиочастотных меток и т.д.

Big Data + HPC (HPDA - High Performance Data Analysis)


Annual data production follows to exponential law.

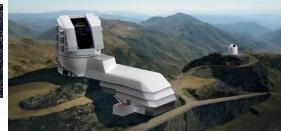


Science

CERN Large Hadron Collider > 20 Pb/Year, > 200 Pb stored

Astrophysics

Climate



Square Kilometer Array radio telescope (SKA) > 20 Pb/Day (estimation)

...et cetera

Large Synoptic Survey Telescope (LSST) > 10 Pb/Year (estimation)

Большие данные и искусственный интеллект: текущее состояние

- * Реконструкция и анализ событий в ФВЭ, нейтринной, ядерной физике
- * Подходы к решению проблемы размерности в анализе и моделировании квантовомеханических систем
- * Мониторинг качества данных
- * Анализ работы распределенной компьютерной инфраструктуры
- * Компьютерная безопасность

Большие данные + искусственный интеллект: перспективы

- * Мониторинг и управление физическими установками
- * Широкое использование специализированных программируемых микросхем для задач анализа данных и управления
- * Сжатие и онлайн-фильтрация данных установок мегасайнс
- Квантовые и квантовоподобные алгоритмы для решения широкого класса задач (управление, анализ, моделирование)
- * Перспективные исследования в области биофизики, медицинской физики и генетики
- * Анализ, валидация и оптимизация научных программных продуктов и систем
- * Открытые научные данные

Strategy of Information Technologies and Scientific Computing in JINR

CONCEPT

of the development of IT-technologies and scientific computing aimed at solving strategic tasks of JINR through the introduction and development of a whole range of advanced IT solutions, integrated into a unified computing environment — scientific IT ecosystem that combines a variety of technological solutions, concepts and methodologies.

Характеристики ІТ-экосистемы

Развиваемая IT-экосистема должна предоставить доступ к информационному пространству, включающему в себя сервисы для организации эффективной работы сотрудников ОИЯИ и программно-аппаратную среду для решения задач различной сложности и тематики, управления и обработки данных различных объемов и структур, обучения и организации научных и исследовательских процессов.

* Для обеспечения развития этой IT-экосистемы необходимо реализовать информационно-коммуникационное обеспечение, базирующееся на новейших технологических сетевых решениях, обеспечивающих более высокую пропускную способность и надежность функционирования сетей. Постоянно развиваемая сетевая инфраструктура обеспечит возрастающие потребности в эффективной и быстрой обработке и хранение данных, получаемых как с БАК, так и в будущих экспериментальных проектах, реализуемых как в ОИЯИ, так и в мире.

Характеристики ІТ-экосистемы

Ключевой основой научной IT-экосистемы является распределенная программно-конфигурируемая НРС-платформа, объединяющая суперкомпьютерные (гетерогенные), грид- и облачные- технологии, с целью предоставления оптимальных подходов для решения различных типов научных и прикладных задач, требующих как массивнопараллельных вычислений, так и привлечения методов и технологий Больших данных, данная платформа позволит наиболее эффективно использовать новейшие вычислительные архитектуры.

- * Развитие научной ІТ-экосистемы требует использование новейших технологий сбора и анализа данных, обмена ими, привлечение новых методов вычислений, такие как квантовые, когнитивные вычисления, методы машинного обучения и интеллектуального анализа данных, а также разработки новой алгоритмической базы.
- * Данная ІТ-экосистема должна является базовой платформой для обучения ІТ-специалистов, способных разрабатывать алгоритмические и программные решения в области системного и прикладного программирования, математических, информационных и имитационных моделей, создавать информационные ресурсы глобальных сетей, образовательный контент, прикладные базы данных, решать задачи профессиональной деятельности на основе информационной культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

телекоммуникационных технологий:

- * сети с терабитными скоростями передачи данных;
- * сети, основанные на новых принципах организации, включая когнитивные, гибридные, адаптивные, реконфигурируемые и гетерогенные (программно-конфигурированные сети и т.д.);
- * сетевые системы с гарантированным динамическим выделением ресурса;
- * исследовательские системы нового поколения, позволяющие передавать большие объемы данных
- * сети, позволяющие, выполняя распределенную обработку экзабайтных объемов данных,

* вычислительных систем:

* распределенная программно-конфигурируемая НРС-платформа, объединяющая суперкомпьютерные (гетерогенные), грид- и облачные- технологии, с целью наиболее эффективного использовать новейшие вычислительные архитектуры.

* алгоритмов и программного обеспечения для:

- * распределенного решения отдельных классов сложных вычислительных задач,
- * машинного обучения,
- * формализации и извлечения знаний из плохо структурированных и неструктурированных данных
- * вычисления на основе квантового формализма

технологий обработки и анализа данных:

- * сервисы для распределенных и параллельных вычислений (metacomputing) для повышения эффективности научных исследований посредством использования суперкомпьютеров;
- * разработка масштабируемых алгоритмов и программ обработки многопараметрических, многомерных, иерархических и многосерийных наборов данных экзабайтного объема
- * системы аналитики нового поколения, основанные на эффективных методах и алгоритмах формализации и извлечения знаний и обработки больших данных
- * прогнозное моделирование компьютерных моделей мегаэкспериментов и функционирования перспективных систем

информационной безопасности:

- * защита компьютерных инфраструктурных систем на основе принципиально новых парадигм, включая квантовую криптографию и вычисления, нейрокогнитивные принципы;
- * использование перспективных средств и программных систем защиты данных с учетом новых принципов организации данных и взаимодействие объектов данных, в том числе глобальной интеграции информационных систем, повсеместного доступа к приложениям, новых протоколов Интернета, виртуализации, социальных сетей, данных мобильных устройств и геолокации.