ML Application on the NICA complex August 28, 2023

Gradient Boosted Decision Tree for Particle Identification in MPD

V. Papoyan^{1,3}

Coauthors: A. Aparin², A. Ayriyan^{1,3}, H. Grigorian^{1,3}, A. Korobitsin², A. Mudrokh²

¹MLIT JINR, ²VBLHEP JINR, ³AANL (YerPhi)

This work was done with support from the Russian Science Foundation under Grant No. 22-72-10028

Particle Identification in MPD experiment

MPD particle identification (PID) based on Time-Projection Chamber (TPC) and Time-of-Flight (TOF).

A TPC can identify charged particles by measuring their specific ionization **energy losses** (dE/dx);

A TOF measures the particle flight **time** over a given **distance** along the track trajectory;

Knowing the particle momentum (from TPC) one obtains the mass squared and thus identity of the particle.

Baseline PID in MPD - N-sigma

in Bi+Bi collisions at 9.2 GeV

Tabular Data: Deep Learning vs Gradient Boosting

Unstructured data

Structured data

	Fuselage length	Wingspan
Boeing 707	44,07	39,9
Cessna 172	8,28	11
B-2 Spirit	20,90	52,12

https://sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html

Gradient Boosting

Gradient boosting is a machine learning technique which combines weak learners into a single strong learner in an iterative fashion

Gradient Boosted Decision Tree

Gradient Boosted Decision Tree (GBDT) uses decision trees as weak learner. They can be considered as automated multilevel **cut-based** analysis

XGBoost vs LightGBM vs CatBoost vs SketchBoost

Asymmetric Tree (XGB, LGBM)

Level-wise Tree Growth (XGB)

Symmetric Tree (CatBoost, SketchBoost)

Leaf-wise Tree Growth (LGBM)

Datasets

Subsamples of the two MPD Monte-Carlo productions have been used (Request 25 & Request 29)

	prod05	prod06	107
Event generator	UrQMD	PHQMD	
Transport	Geant 4	Geant 4	10 ⁵
Impact parameter ranges	0-16 fm (mb)	0-12 fm	train Dataset
Smear Vertex XY	0.1 cm	0.1 cm	10 ²
Smear Vertex Z	50 cm	50 cm	101
Colliding system	Bi+Bi	Bi+Bi	100
Energy	9.2 GeV	9.2 GeV	π^+ k^+ p $\pi^ k^ \overline{p}$ Particle species

track selection criteria: $(p < 100) \& (|m^2| < 100) \& (nHits > 15) \& (|eta|<1.5) \& (dca < 5) \& (|Vz| < 100)$

Data description

Experiment design

All classifiers have been trained using the Nvidia Tesla V100-SXM2 NVLink 32GB HBM2 within the ecosystem for tasks of machine learning, deep learning, and data analysis at **HybriLIT** platform

Two stages of the experiments

Some parameters for the tuning and model evaluation stages

Stage	Learning Rate	Max Number of Iterations	Early Stopping
Tuning	0.05	5 000	200
Model Evaluation	0.015	20 000	500

Results for hyperparameter tuning (after **30 iterations** of the TPE algorithm for each GBDT)

Framework	Max. Depth	L2 leaf reg.	Min. data in leaf size	Rows sampling rate
XGBoost	8	2.3	0.00234	0.942
LightGBM	12	0.1	4	0.981
CatBoost	8	3.0	5	0.99
SketchBoost	8	3.0	5	0.99

Iosipoi L., Vakhrushev A. SketchBoost: Fast Gradient Boosted Decision Tree for Multioutput Problems

Comparative analysis of the algorithms. Efficiency

		XGBoost	LightGBM	CatBoost	SketchBoost
Total Efficier	су	0.99327	0.99235	0.99138	0.99239

Comparative analysis of the algorithms. Inference time

GPU: Nvidia Tesla V100-SXM2 NVLink 32GB HBM2

CPU: Intel Xeon Gold 6148 CPU @ 2.40 GHz 20 Cores / 40 Threads

XGBoost Model Interpretation. Feature Importance

Importance type can be defined as the total gain across all splits the feature is used in

This approach are sensitive when input variables are correlated, and may lead for instance to unreliability in the importance ranking

[prod05] Total feature importance across all models

Model Interpretation. Shapley Additive exPlanations

SHAP is a game theoretic approach to explain the output of any ML model

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_S(x_S) \right]. \quad \text{SHAP}$$

|F| is the size of the full coalition. **S** represents any subset of the coalition that doesn't include player **i**. The bit at the end is just "how much bigger is the payoff when we add player **i** to this particular subset **S**"

Misclassification. Confusion Matrices

17

	р	charge	dedx	m2	nHits	eta	dca	Vx	Vy	Vz	phi	theta	gPt	beta
383509	1.51686	-1	1.23853	0.015994	32	-0.644238	0.088488	0.00004	-0.024725	<mark>41</mark> .5421	2.29702	2.1746	1.24865	0.9973
				-2	-	1	o	1	2		_			
			char	ge	_									
			1	m2										
			be	eta		-	~	>						
			de	dx		1	9	1						
				р		· · · ·	<u> </u>							
			nH	its			X							
			1	phi			X							
			9	gPt										
			c	lca			X							
				Vy			$\langle \cdot \rangle$							
				Vz			Ų.			π	-].			
				Vx						— k				
			the	eta						— <u></u>				
				eta						P				
				-2	-	1	0 Model outp	1 ut value	2					

Comparison with N-sigma

Efficiency ratio of XGBoost and n-sigma method

Comparison with N-sigma

Efficiency ratio of XGBoost and n-sigma method

Conclusion and Outlooks

In general XGBoost has been demonstrated highest PID efficiency in comparison with considered algorithms of GBDT.

Next we are going to do additional testing to characterize identification stability of the model on data produced with different initial parameters of generated MC tracks at the MPD detector;

Also we are going to analyse the nature of the misclassifications and investigate the class imbalance problem.

Backup

Formulas

$$m^{2} = \frac{p^{2}}{c^{2}} \left[\frac{t^{2}c^{2}}{L^{2}} - 1 \right] \qquad \beta = \frac{L}{ct}$$

$$-\left(rac{dT}{dx}
ight)=rac{4\pi n_e z^2 e^4}{m_e v^2}\left[\lnrac{2m_e v^2}{I}-\ln(1-eta^2)-eta^2-\delta-U
ight],$$

Classification of Charged Particles

In Machine Learning terms PID can be considered as classification task (Supervised learning).

Let

- **X** is the input space (particle characteristics such as: dE/dx, m², β , q, etc)
- **Y** is the output space (particle species such as: π , k, p, etc)

Unknown mapping exists

 $\mathbf{m}: \mathbf{X} \to \mathbf{Y},$

for values which known only on objects from the finite training set

 $X^{n} = (x_{1}, y_{1}), ..., (x_{n}, y_{n}),$

Goal is to find an algorithm **a** that classifies an arbitrary new object $\mathbf{x} \in \mathbf{X}$

a : $X \rightarrow Y$.

Data description

feature	values range
р	(0.1, 100)
q	{-1 , 1 }
dedx	(0, 72)
m2	(-100, 100)
nHits	[20, 53]
eta	[-1.3, 1.3]
dca	(0, 5)

feature	values range
Vx	(-0.106, 0.106)
Vy	(-0.103, 0.112)
Vz	(-50, 54.1)
phi	(-3.1415, 3.1415)
theta	(0.53, 2.61)
gPt	(0.106, 98)
beta	[0.012, 1.564]

Hyperparameters tuning

Tree-structured Parzen Estimator (TPE) was used to find the optimal hyperparameters;

TPE is a form of Bayesian Optimization.

