

The XXV International Scientific Conference of Young Scientists and Specialists (AYSS-2021)

DIRAC Interware as a service for high-thoughput computing in JINR

Igor Pelevanyuk^{1,3}, Andrei Tsaregorodtsev^{2,3}

¹Joint Institute for Nuclear Research, Dubna, Russia ²CPPM, Aix-Marseille University, CNRS/IN2P3, Marseille, France ³Plekhanov Russian University of Economics, Moscow, Russia

Throughput vs Performance

High Performance - Sharing the workload of interdependent processes over multiple cores

Focus of this talk

High Throughput - Many independent processes that can run in 1 or few cores on the same computer

Example of jobs: Monte-Carlo generation, Data reconstruction

What was done Tier-1 CICC/Tier-2 Clouds Govorun NICA Cluster UNAM

Running Running Running Running Running **Running**

The computing resources of the JINR Multifunctional Information and Computing Complex, clouds in JINR Member-States, cluster from Mexico University were combined using the DIRAC Interware.

What is DIRAC?

DIRAC is a framework that provides all the necessary components to build ad-hoc grid infrastructures interconnecting computing resources of different types, allowing interoperability and simplifying interfaces. This allows to speak about the DIRAC interware.

Why it is complex

Protocol

Auth Storage

Auth Jobs Job Submit.

Component

local, root Kerb., x509

Kerb. x509 Slurm Grid

Tier-2/CICC

GridFTP, root x509

x509

Grid

Tier-1

local ceph key

SSO OpenNebula

Cloud

-l-u-s-t-r-e-

local *HybriLIT*

HybriLIT

Slurm

Govorun/HybriLIT

^{*} This is a simplified schema to demonstrate complexity and variability of protocols and accesses approaches

Why DIRAC?

1. Single system for all aspects of computing

User Interface

API

Central configuration

Workload management

Data management

Integration tools

File Catalog

Workflow management

Metadata management

Accounting

Management

Why DIRAC?

2. Good performance

Why DIRAC?

3. Active users and developers community

- LHCb, Belle II, CTA
- Multi-community services
 - ILC, CALICE
 - IHEP: BES III, Juno, CEPC
 - **FG-DIRAC**
 - GridPP
 - DIRAC4EGI
 - PNNL

DIRAC@CNAF

Auger, ELI, NICA, Virgo, LSST, ...

History of DIRAC at JINR

2013 – Development of monitoring system for BES-III installation. First tries to setup and configure DIRAC infrastructure.

2017 – DIRAC Interware installed; basic configuration done. Used for educational purposes. **dCache** storage integrated, **Tier2** integrated.

2018 – **HybriLIT** integrated. **JINR cloud** integrated using OCCI protocol. Tests of full cycle of Monte-Carlo for **BM@N** were performed.

2019 – Clouds of JINR Member-States integrated by module developed in JINR. MPD starts using DIRAC for massive Monte-Carlo production. Tier1, Govorun and EOS integrated in DIRAC.

2020 – **Folding@Home** jobs submitted to clouds via DIRAC. **Baikal-GVD** jobs submitted to JINR and PRUE clouds.

Steps

1. DIRAC setup, configuration, development and tuning

2. Integration of computing and storage resources

3. Elaboration of approaches for effective use of resources

What do we use DIRAC for?

Baikal-GVD

Monte-Carlo – Real

BM@N

Monte-Carlo – Real Reconstruction – Tests

Folding@HOME

Teaching

Statistics: jobs done Cumulative Jobs by Site

119 Weeks from Week 25 of 2019 to Week 40 of 2021

Generated on 2021-10-12 08:52:14 UTC

Statistics: normalized time

Contribution: normalized time

Ratio: between experiments BM@N Folding@Home 2% 3% Baikal-GVD 5% **MPD** 90% 18

Individual CPU core performance study

- Centralized job management gives possibility for centralized and unified performance study of different computing resources.
- Before running user jobs DIRAC Pilots execute benchmark for CPU core they are running on.
- Benchmark is DiracBenchmark2012 or DB12. It evaluate just CPU core performance. Disk I/O, RAM speed, Network, CPU caches and other highly important aspects of performance are neglected by DB12.

New: performance analysis

Discoveries

Conclusion on MPD+DIRAC

- After 2 years of active operations, DIRAC proved to be useful and effective tool for HTC jobs in JINR.
- >1M jobs successfully done (830 years of wall time).
- So far, all available major computing resources were successfully integrated to DIRAC.
- DIRAC is used not only as workload management system but also as a data management system. And tests to use it as workflow management system were successfully performed.
- All this could not be possible without cooperation with users and resource administrators

List of participants

DIRAC: Igor Pelevanyk, Andrey Tsaregorodtzev

Baikal-GVD: Dmitry Zaborov

BM@N: Konstantin Gertsenberger, Dmitry Tsvetkov

MPD: Oleg Rogachevskiy, Andrey Moshkin

SPD: Alexey Zhemchugov

Responsible for resources:

Cloud: Nikolay Kutovskiy, Nikita Balashov

dCache: Vladimir Trofimov

Govorun: Dmitry Podgainy, Dmitry Belyakov, Maxim Zuev

LHEP cluster: Boris Schinov

Tier-1, Tier-2, EOS: Valery Mitsyn

Detailed articles

- 1. Gergel, V., V. Korenkov, I. Pelevanyuk, M. Sapunov, A. Tsaregorodtsev, and P. Zrelov. 2017. **Hybrid Distributed Computing Service Based on the DIRAC Interware**.
- 2. Korenkov, V., Pelevanyuk, I. & Tsaregorodtsev, A. 2019, "**Dirac system as a mediator between hybrid resources and data intensive domains**", CEUR Workshop Proceedings, pp. 73.
- 3. Balashov, N.A., Kuchumov, R.I., Kutovskiy, N.A., Pelevanyuk, I.S., Petrunin, V.N.
- & Tsaregorodtsev, A.Y. 2019, "Cloud integration within the DIRAC Interware", CEUR Workshop Proceedings, pp. 256.
- 4. Korenkov, V., Pelevanyuk, I. & Tsaregorodtsev, A. 2020, Integration of the JINR hybrid computing resources with the DIRAC interware for data intensive applications.
- 5. Kutovskiy, N., Mitsyn, V., Moshkin, A., Pelevanyuk, I., Podgayny, D., Rogachevsky, O., Shchinov, B., Trofimov, V. & Tsaregorodtsev, A. 2021, "Integration of Distributed Heterogeneous Computing Resources for the MPD Experiment with DIRAC Interware", Physics of Particles and Nuclei, vol. 52, no. 4, pp. 835-841.
- 6. Pelevanyuk, I., "Performance evaluation of computing resources with DIRAC interware", AIP Conference Proceedings 2377, 040006 (2021)

