
SPD Online Filter
Middleware Development Status

Nikita Grebena

Artem Plotnikovb

Polina Korshunovab

a Joint Institute for Nuclear Research, Dubna
b Moscow Engineering Physics Institute, Moscow

VIII SPD Collaboration Meeting. 7.11.2024

High-throughput computing

➢ HTC is defined as a type of computing that simultaneously executes

numerous simple and computationally independent jobs to perform a

data processing task.

➢ Since each data element can be processed simultaneously, this can be

applied to data aggregated by a data acquisition system (DAQ).

➢ To ensure efficient utilization of computational resources, data

processing should be multi-stage:

○ One stage of processing → task

○ Processing a block of data (file) → job

2Task-job relationship Data processing workflow example

Middleware software

➢ Data management system (one master student)

○ Data lifecycle support (data catalog, consistency

check, cleanup, storage);

➢ Workflow Management System (one master student)

○ Define and execute processing chains by generating

the required number of computational tasks;

➢ Workload management system (2 PhD students,

including me):

○ Create the required number of processing jobs to

perform the task;

○ Control job execution through pilots working on

compute nodes;

➢ Coordinated by Danila Oleynik 3

«SPD OnLine filter» – hardware and software complex

providing multi-stage high-throughput processing and filtering

of data for SPD detector.

Architecture of SPD Online Filter

Dataflow and data processing concept

Main data streams:

❖ SPD DAQs, after dividing sensor signals into

time blocks, send data to the SPD Online

Filter input buffer as files of a consistent size.

❖ The workflow management system creates

and deletes intermediate and final data sets

❖ The workload management system

“populates” the data sets with information

about the resulting files

❖ At each stage of data processing, pilots will

read and write files to storage and create

secondary data

4Tereschenko, D., Ponomarev, E., Oleynik, D. et al. SPD On-Line Filter: Workflow and Data Management Systems. Phys. Part. Nuclei 55, 603–605 (2024).

Workload management system requirements - reminder

❏ Task registration: formalized task description,

including job options and required metadata

registration;

❏ Jobs definition: generation of required number of

jobs to perform task by controlled loading of

available computing resources;

❏ Jobs execution management: continuous job state

monitoring by communication with pilot, job retries

in case of failures, job execution termination;

❏ Consistency control: control of the consistency of

information in relation to the tasks, files and jobs;

❏ Scheduling: implementing a scheduling principle for

task/job distribution;
Forming jobs based on dataset contents, one file per one job

5

The key requirement - systems must meet the high-throughput
paradigm.

Data and Workflow Management system requirements

Data management

❏ Abstraction from the DAQ data format;

❏ The ability to logically group data (not relevant to

the level of physical storage);

❏ Lack of redundancy in the organization of

datasets (control of unnecessary replicas);

❏ Separation of metadata from physical data

storage (data catalog);

❏ Accounting for the state of data from a data

processing perspective;

❏ Control the consistency of information in the

catalog with respect to input and output storage.

6

Workflow management

❏ Define workflows which represents multi-stage

processing;

❏ Organizing data processing sequences (chains);

❏ Formation of a request for data processing

according to a certain sequence;

❏ Processing request execution.

➢ task-manager – implements both external and

internal REST APIs. Responsible for registering

tasks for processing, cancelling tasks, reporting on

current output files and tasks in the system.

➢ task-executor – responsible for forming jobs in the

system by dataset contents.

➢ job-manager – accountable for storing jobs and

files metadata, as well as providing a REST API for

the executed jobs.

➢ job-executor – responsible for distribution of jobs

to pilot applications, updating the status of jobs

➢ pilot – responsible for running jobs on compute

nodes, organizing their execution, and

communicating various information about their

progress and status.

Architecture and functionality of Workload Management System

Reminder

SPD Workload Management System High Level Architecture 7

Pilot Agent Reminder

8

Two communication channels:

● HTTP (aiohttp)

● AMQP (message broker - RabbitMQ)

Two types of nodes:

● Multi-CPU

● Multi-CPU + GPU

➢ The agent application is deployed on a compute node

and consists of the following two components: a UNIX

daemon and the pilot itself.

➢ The UNIX daemon's objective is to run the next pilot by

downloading an up-to-date version from the repository.

➢ Pilot itself is a multi-threaded Python application

responsible for

○ Receiving and validating jobs from the message

broker;

○ Downloading input files for the payload stage and

uploading the result files to the output storage;

○ Launching a subprocess to execute a payload

(decoding DAQ format, track recognition algorithm,

etc.)

○ Keeping the upstream system informed of the

current status of the payload and the pilot itself via

heartbeat/status updates during each phase of pilot

execution;

Workload Management System - Pilot

9

✓ A detailed job status model has been described;
✓ Error codes introduced;
✓ Pilot ran through all stages of the current job

execution;
✓ Pilot at this stage runs a script that does a basic

MD5 hash compute;
✓ UNIX Daemon is implemented and currently

running;
✓ Two pilots are currently running on two different

virtual machines;
✓ No more pilot emulator!
✖ Major cycle of tests and refactoring is required;
✖ Debugging during execution of the entire task (all

jobs associated with a task);

Aftermath of executing the entire queue

UNIX Daemon’s running Pilot

Workload Management System Current Status

Design of services:

✓ Designed and implemented a list of required REST API methods and their signatures;

✓ Implemented a mechanism for declaring the data model in the database based on ORM and migration scripts;

✓ Configured CD tools (build and deployment) on the JINR LIT infrastructure;

✓ Designed inter-service interaction scenarios – defined API contracts;

✓ Designed Pilot internal architecture;

✓ Workload Management System - Pilot Interaction Models in Finite State Machine;

✖ A layer to handle reply-messages (designated queue) after registration from DSM should be added;

Prototype of services:

✓ Job management subsystem is the most advanced: most interactions implemented and being tested;

✓ Pilot and Pilot Daemon is currently working;

✓ Pilot handles all stages of job execution on the given workload;

✖ Task processing;

10

➢ task-manager – a service that requests the last

dataset created in the previous step of the workflow

chain, populates it, and sends the next task to the

WMS.

➢ task-generator – responsible for starting the

workflows based on the available templates.

➢ template-manager – service for interaction with the

data processing operator/user.

➢ data access – a service that encapsulates direct

database access, provides a RESTful API’s through

endpoints.

➢ scheduler – a services responsible for making

decision on when to close datasets, cancel or

change a priority of a task.

Workflow Management System

Workflow Management System High-Level Architecture

11

Task generation service

12

1. Getting registered datasets
from DMS from RabbitMQ;

2. Matching datasets by name
mask to the desired template;

3. Registration of input dataset
in the system;

4. Creating a workflow from a
template;

5. Creating output dataset and
log dataset in the system;

6. Creating a task;

Task management service

13

● Iterate on tasks in “DEFINED” status;
● Querring DMS about the status of the input dataset (“CLOSED”);
● Creating output datasets and log datasets in DMS;
● Sending the task to RabbitMQ for further processing in WMS;
● Change task status to "IN_PROGRESS".

Data access service

14

● Data access service is implemented and provides all necessary endpoints at this stage;
● Test coverage is required;

Description of the current implemented API’s

Service for interaction with user

15

● Registration and authorization of users with different rights;
● CWL template/tasks output;
● Creation of CWL templates by superuser;
● CWL template status changes by superuser;
● Store template in the database;

● FastAPI Users
● JWT-token

Examples of Templates and Tasks

16

● Viewing templates and tasks is available to all users who have completed the authorization process;
● Template creation is only available to superusers;

WfMS task descriptionCreated template

Workflow Management System Current Status

Current results:

✓ Designed a list of required REST API’s and implemented data access service;

✓ Implemented a service for user interaction, allowing for templates and tasks management;

✓ Implemented a task generation service: maps a dataset by mask to the desired template,
creates a workchain, and generates tasks;

✓ Multi-container application orchestrated via docker-compose;

Further plans:

➢ To go fully asynchronous;

➢ Integrate with SPD IAM;

➢ Add support for loading a template from a file;

➢ Run integration tests;

➢ Implement a service for interaction with WMS;

17

Architecture and functionality of Data Management System

18

Architecture of Data Management System

➢ DSM-Register (Data Registration): A service that receive

requests for adding/deleting data in the system

asynchronously (via MQ). Then the service makes changes

to the data catalog via the API of the dsm-manager

➢ DSM-Manager (REST API of data catalog):

➢ File management: get information about the system’s

data structure

➢ Dataset management: create a dataset, add a file to the

dataset, close the dataset; delete the dataset; provide

information of contents of the dataset (files in the

dataset)

➢ DSM-Inspector (Daemon tasks): delete files on storage,

check consistency of files, monitoring the use of storage (for

example, "dark" data)

Tereschenko, D., Ponomarev, E., Oleynik, D. et al. SPD On-Line Filter: Workflow and Data Management Systems. Phys. Part. Nuclei 55, 603–605 (2024).

RabbitMQ configured queues

19

Example: occurrence of an error during file registration

20Response in reply-queue

Sending a message for file registration

● Let's temporarily suspend the dsm-manager
service and send a message to the
dsm.register.file.process queue.

● An error should occur when connecting to the
service - corresponding error message should be
sent to the dsm.register.file.process.reply queue

DSM-Manager

21

● A basic set of CRUD operations on data in the form of REST API is developed.
● The whole application construction is based on one of SOLID principles - DIP (dependency

inversion principle) and is implemented using Dependency Injector tool.

Swagger UI with API description of the service Example of calling the service to get the list of files

Tereschenko, D., Ponomarev, E., Oleynik, D. et al. SPD On-Line Filter: Workflow and Data Management Systems. Phys. Part. Nuclei 55, 603–605 (2024).

Data Management System Status

Current results:

✓ dsm-manager is fully functional for this stage of prototyping;

✓ dsm-register is mostly implemented;

Further plans:

dsm-inspector

Implement background services for

➢ Deleting files on storages;

➢ Control file uploads;

➢ Control storage utilization;

dsm-register

Realize processing of messages from queues

➢ dsm.register.dataset.closed;

➢ dsm.register.dataset.upload;

➢ dsm.register.dataset.delete;
22

Next major steps

23

❏ Task and workflow processing
❏ Execute the entire workflow set up on the level of Workflow Management System;
❏ The entire workflow - a chain of dependent tasks.

❏ Middleware and applied software integration
❏ Requires prototyped applied software and simulated data;
❏ Non-functional requirements for applied software.

❏ Logging
❏ Currently, each microservice logs are mapped to the host via a shared file system between Docker and the

host.
❏ Ideally – ELK (Elastic-Logstash-Kibana) stack to build a log analysis platform.

❏ Configuration
❏ Consider to centralize some of the shared configurations across multiple services (Consul, Etcd).

❏ Documentation
❏ Given the increasing complexity of the internal logic of the software, it is necessary to document each step

of the development.
❏ Metrics and monitoring

❏ For example, service query-per-second, API responsiveness, service latency etc. (InfluxDB, Prometheus,
Graphana)

Thank you for your attention!

24

