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Reminder: main components

❖ Data & Storage Management 

(Polina Korshunova - master graduate)

➢ Data lifecycle support (data catalog, 

consistency check, cleanup, 

storage);

❖ Workflow Management System

(Artem Plotnikov - master graduate) 

➢ Define and execute processing 

chains by generating the required 

number of computational tasks;

❖ Workload management system

(Nikita Greben, Leonid Romanychev):

➢ Create the required number of 

processing jobs to perform the task;

➢ Control job execution through pilots 

working on compute nodes;
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SPD Online Filter middleware code base

3

➢ Around ~25 000 lines of code for the 

entire SPD Online Filter Middleware;

➢ Full deployment requires ~16 Docker 

containers: one container per 

microservice;

➢ Configured CI/CD pipeline, currently 

only for the Workload Management 

System;

❗ May need to be reorganized to deploy 

as a standalone project on the testbed

○ Hardware for the prototyping of a 

compute cluster

❗ Deploying Pilot Agents to Compute 

Nodes.



Workflow Management System - Core logic

The main objectives of Workflow 

Management System:

1. Retrieves input datasets from Data 

Management System;

2. Maps these datasets with the 

appropriate CWL template;

3. Generates the workchain from this 

template;

4. Generates tasks and sends them to 

the Workload Management System 

for further execution;

5. Oversees datasets: decision making 

for creation, closure, deletion;

6. Manages the concurrent execution 

of workchains and tasks.
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Workflow Management System Update

1. Rewritten to take advantage of asynchronous 
features;

2. Added the ability to clone templates;
3. Add support for loading a template from a file;
4. Added possibility to delete a template in LOADED 

status;
5. The internal authorization system has been 

abandoned and integration with SPD-IAM has been 
performed;

✅ Implemented the service to interact with the 
Workload Management System.
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Integration with SPD-IAM

Debugging the interaction with the Workload 
Management System.



Workflow Management System Update
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Task-job relationship (reminder)
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Task-job relationship

Data processing workflow example



Workload Management System Major Update
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➢ Task-Register and Job-Register were 
added;

➢ Major refactoring of Task-Management and 
Job-Management;

➢ Rewritten using dependency injection 
approach (easy to maintain and evolve);

➢ Producer/Collector services completely 
reworked;

✓ Implemented task-executor (first 
approximation scheduler);

✓ Launched an execution of one task across 
the system;

✓ Implemented the task-inspector/watchdog 
service.

Next steps:

1. Implement metric-collection service;
2. Major refactoring and testing is needed;
3. Monitoring service, traces collection



First “load testing” 
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1. 100 concurrently running pilots
2. ~2100 jobs completed in 7 min
3. Pilot works for ~15 seconds



First “load testing” 
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1. Workload Management System generates ~5000 jobs in less than a minute
2. Must be tested on meaningful data and payload, the system may not need to be over engineered 

more



DAQ data generator
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1. Using SPD DAQ Data Generator, we’ve 
generated 50 files, each ~2Gb;

2. Input dataset has been registered with these 
files;

3. Task has been processed (or 50 jobs);
4. The payload for Pilot is simple: compute the 

MD5/BLAKE3 hash, as there is no actual 
computation involved at this stage.;

5. Takes about ~7 min to generate a file, using 
JINR Cloud VM: 12x 1-core Intel Xeon 
E5-2650

6. Registration of the entire dataset: ~10 sec



Next steps/milestones
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✅ Task and workflow processing has been achieved
❏ Execution of the entire workflow set up on the level of Workflow 

Management System
❏ The entire workflow - a chain of dependent tasks
❗ The major cycle of refactoring and test coverage is required

❓ Middleware and applied software integration
❏ Requires prototyped applied software and simulated data
❏ Non-functional requirements for applied software
❏ Move to the execution of the jobs on the pilot with a "real" payload

❓ Middleware deployment and release management
❏ Focus on shipping SPD Online Filter as standalone software
❏ Work on the deployment on the upcoming testbed ( 256 CPU Cores, 1TB 

RAM, 120TB HDD)
❏ Select the appropriate release management strategy



Next major steps
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❏ Distributed tracing
❏ Monitor and track the path of requests as they pass through 

multiple, interconnected microservices within SPD Online 
Filter.

❏ Logging
❏ Currently, each microservice logs are mapped to the host via 

a shared file system between Docker and the host.
❏ Ideally – ELK (Elastic-Logstash-Kibana) stack to build a log 

analysis platform.
❏ Configuration

❏ Consider to centralize some of the shared configurations 
across multiple services (Consul, Etcd), using Gitlab Secrets 
for now.

❏ Metrics and monitoring
❏ For example, service query-per-second, API responsiveness, 

service latency etc. (InfluxDB, Prometheus, Graphana)
❏ Documentation

❏ Given the increasing complexity of the internal logic of the 
software, it is necessary to document each step of the 
development.

Never ending cycle



Future plans

Task-executor (Scheduler)
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1. Expected to process tasks from a global queue;
2. Each dataset has a rank (priority) that determines its processing order;
3. Tasks are processed in priority order, with dynamic updates to maintain 

system responsiveness;
4. Priority-based task scheduling mechanism is expected, with rank 

update scheme involving Control Theory (option to be explored later);
5. Not applicable at this stage of the development process.
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Backup slides



Gitlab project structure for CI/CD
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RabbitMQ configured queues
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➢ task-manager – a service that requests the last 

dataset created in the previous step of the workflow 

chain, populates it, and sends the next task to the 

WMS.

➢ task-generator – responsible for starting the 

workflows based on the available templates.

➢ template-manager – service for interaction with the 

data processing operator/user.

➢ data access –  a service that encapsulates direct 

database access, provides a RESTful API’s through 

endpoints.

➢ scheduler – a services responsible for making 

decision on when to close datasets, cancel or 

change a priority of a task.

Workflow Management System

Workflow Management System High-Level Architecture
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Examples of Templates and Tasks
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● Viewing templates and tasks is available to all users who have completed the authorization process;
● Template creation is only available to superusers;

WfMS task descriptionCreated template



Workload management system requirements - reminder

❏ Task registration: formalized task description, 

including job options and required metadata 

registration;

❏ Jobs definition: generation of required number of 

jobs to perform task by controlled loading of 

available computing resources;

❏ Jobs execution management: continuous job state 

monitoring by communication with pilot, job retries 

in case of failures, job execution termination;

❏ Consistency control: control of the consistency of 

information in relation to the tasks, files and jobs;

❏ Scheduling: implementing a scheduling principle for 

task/job distribution;
Forming jobs based on dataset contents, one file per one job
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The key requirement - systems must meet the high-throughput 
paradigm.



Workload Management System - Pilot Agent
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Task-executor (Scheduler)

Continuous-Time Domain
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The original aging term is the following: Discrete Simulation Continuous Solution

Retries Exact event times Requires Dirac delta

Implementation Matches real code Theoretical analysis

Stability Bounded by design Must prove 
convergence?

Visualization Step changes Smooth curves
(Runge-Kutta Solver?)

With lead-lag compensation, should be 

And retry penalty depends on past events (retry history), making the system 
state depend on its history, so we have a delay differential equation, which 
models the “physics” of retry-driven rank adjustments of our jobs

Heaviside step function H(t−tk) introduces instantaneous jumps at 
retry times tk



Data consistency
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Data & Storage Management Update
1. DSM-Register (Data Registration):

a. Create a new consumer for the queue 

dsm.register.dataset.delete

b. Write a correspondent message handler 

2. DSM-Manager (REST API of data catalog):

a. Getting the list of files/datasets by status

b. Searching for a file by name

3. DSM-Inspector (Daemon tasks):

a. Storage monitoring service for dark files

b. Checking file integrity

c. Deleting files and datasets
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Architecture of Data Management System



Data & Storage Management

Next steps:

1. dsm-inspector:

a. Implement background services for

i. Control file uploads

ii. Control storage utilization

2. dsm-register

a. Implement message processing from the following queues:

i. dsm.register.dataset.closed - Accepting request to close a dataset

ii. dsm.register.dataset.upload - To upload files in a dataset to an 

external storage
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Data consistency
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