
SPD Online Filter
Middleware Status Update

Nikita Greben

Joint Institute for Nuclear Research, MLIT, Dubna

IX SPD Collaboration Meeting
AANL Yerevan

14.05.2025

Reminder: main components

❖ Data & Storage Management

(Polina Korshunova - master graduate)

➢ Data lifecycle support (data catalog,

consistency check, cleanup,

storage);

❖ Workflow Management System

(Artem Plotnikov - master graduate)

➢ Define and execute processing

chains by generating the required

number of computational tasks;

❖ Workload management system

(Nikita Greben, Leonid Romanychev):

➢ Create the required number of

processing jobs to perform the task;

➢ Control job execution through pilots

working on compute nodes;

2

SPD Online Filter middleware code base

3

➢ Around ~25 000 lines of code for the

entire SPD Online Filter Middleware;

➢ Full deployment requires ~16 Docker

containers: one container per

microservice;

➢ Configured CI/CD pipeline, currently

only for the Workload Management

System;

❗ May need to be reorganized to deploy

as a standalone project on the testbed

○ Hardware for the prototyping of a

compute cluster

❗ Deploying Pilot Agents to Compute

Nodes.

Workflow Management System - Core logic

The main objectives of Workflow

Management System:

1. Retrieves input datasets from Data

Management System;

2. Maps these datasets with the

appropriate CWL template;

3. Generates the workchain from this

template;

4. Generates tasks and sends them to

the Workload Management System

for further execution;

5. Oversees datasets: decision making

for creation, closure, deletion;

6. Manages the concurrent execution

of workchains and tasks.
4

Workflow Management System Update

1. Rewritten to take advantage of asynchronous
features;

2. Added the ability to clone templates;
3. Add support for loading a template from a file;
4. Added possibility to delete a template in LOADED

status;
5. The internal authorization system has been

abandoned and integration with SPD-IAM has been
performed;

✅ Implemented the service to interact with the
Workload Management System.

5
Integration with SPD-IAM

Debugging the interaction with the Workload
Management System.

Workflow Management System Update

6

Task-job relationship (reminder)

7

Task-job relationship

Data processing workflow example

Workload Management System Major Update

8

➢ Task-Register and Job-Register were
added;

➢ Major refactoring of Task-Management and
Job-Management;

➢ Rewritten using dependency injection
approach (easy to maintain and evolve);

➢ Producer/Collector services completely
reworked;

✓ Implemented task-executor (first
approximation scheduler);

✓ Launched an execution of one task across
the system;

✓ Implemented the task-inspector/watchdog
service.

Next steps:

1. Implement metric-collection service;
2. Major refactoring and testing is needed;
3. Monitoring service, traces collection

First “load testing”

9

1. 100 concurrently running pilots
2. ~2100 jobs completed in 7 min
3. Pilot works for ~15 seconds

First “load testing”

10

1. Workload Management System generates ~5000 jobs in less than a minute
2. Must be tested on meaningful data and payload, the system may not need to be over engineered

more

DAQ data generator

11

1. Using SPD DAQ Data Generator, we’ve
generated 50 files, each ~2Gb;

2. Input dataset has been registered with these
files;

3. Task has been processed (or 50 jobs);
4. The payload for Pilot is simple: compute the

MD5/BLAKE3 hash, as there is no actual
computation involved at this stage.;

5. Takes about ~7 min to generate a file, using
JINR Cloud VM: 12x 1-core Intel Xeon
E5-2650

6. Registration of the entire dataset: ~10 sec

Next steps/milestones

12

✅ Task and workflow processing has been achieved
❏ Execution of the entire workflow set up on the level of Workflow

Management System
❏ The entire workflow - a chain of dependent tasks
❗ The major cycle of refactoring and test coverage is required

❓ Middleware and applied software integration
❏ Requires prototyped applied software and simulated data
❏ Non-functional requirements for applied software
❏ Move to the execution of the jobs on the pilot with a "real" payload

❓ Middleware deployment and release management
❏ Focus on shipping SPD Online Filter as standalone software
❏ Work on the deployment on the upcoming testbed (256 CPU Cores, 1TB

RAM, 120TB HDD)
❏ Select the appropriate release management strategy

Next major steps

13

❏ Distributed tracing
❏ Monitor and track the path of requests as they pass through

multiple, interconnected microservices within SPD Online
Filter.

❏ Logging
❏ Currently, each microservice logs are mapped to the host via

a shared file system between Docker and the host.
❏ Ideally – ELK (Elastic-Logstash-Kibana) stack to build a log

analysis platform.
❏ Configuration

❏ Consider to centralize some of the shared configurations
across multiple services (Consul, Etcd), using Gitlab Secrets
for now.

❏ Metrics and monitoring
❏ For example, service query-per-second, API responsiveness,

service latency etc. (InfluxDB, Prometheus, Graphana)
❏ Documentation

❏ Given the increasing complexity of the internal logic of the
software, it is necessary to document each step of the
development.

Never ending cycle

Future plans

Task-executor (Scheduler)

14

1. Expected to process tasks from a global queue;
2. Each dataset has a rank (priority) that determines its processing order;
3. Tasks are processed in priority order, with dynamic updates to maintain

system responsiveness;
4. Priority-based task scheduling mechanism is expected, with rank

update scheme involving Control Theory (option to be explored later);
5. Not applicable at this stage of the development process.

15

Backup slides

Gitlab project structure for CI/CD

16

RabbitMQ configured queues

17

➢ task-manager – a service that requests the last

dataset created in the previous step of the workflow

chain, populates it, and sends the next task to the

WMS.

➢ task-generator – responsible for starting the

workflows based on the available templates.

➢ template-manager – service for interaction with the

data processing operator/user.

➢ data access – a service that encapsulates direct

database access, provides a RESTful API’s through

endpoints.

➢ scheduler – a services responsible for making

decision on when to close datasets, cancel or

change a priority of a task.

Workflow Management System

Workflow Management System High-Level Architecture

18

Examples of Templates and Tasks

19

● Viewing templates and tasks is available to all users who have completed the authorization process;
● Template creation is only available to superusers;

WfMS task descriptionCreated template

Workload management system requirements - reminder

❏ Task registration: formalized task description,

including job options and required metadata

registration;

❏ Jobs definition: generation of required number of

jobs to perform task by controlled loading of

available computing resources;

❏ Jobs execution management: continuous job state

monitoring by communication with pilot, job retries

in case of failures, job execution termination;

❏ Consistency control: control of the consistency of

information in relation to the tasks, files and jobs;

❏ Scheduling: implementing a scheduling principle for

task/job distribution;
Forming jobs based on dataset contents, one file per one job

20

The key requirement - systems must meet the high-throughput
paradigm.

Workload Management System - Pilot Agent

21

Task-executor (Scheduler)

Continuous-Time Domain

22

The original aging term is the following: Discrete Simulation Continuous Solution

Retries Exact event times Requires Dirac delta

Implementation Matches real code Theoretical analysis

Stability Bounded by design Must prove
convergence?

Visualization Step changes Smooth curves
(Runge-Kutta Solver?)

With lead-lag compensation, should be

And retry penalty depends on past events (retry history), making the system
state depend on its history, so we have a delay differential equation, which
models the “physics” of retry-driven rank adjustments of our jobs

Heaviside step function H(t−tk) introduces instantaneous jumps at
retry times tk

Data consistency

23

Data & Storage Management Update
1. DSM-Register (Data Registration):

a. Create a new consumer for the queue

dsm.register.dataset.delete

b. Write a correspondent message handler

2. DSM-Manager (REST API of data catalog):

a. Getting the list of files/datasets by status

b. Searching for a file by name

3. DSM-Inspector (Daemon tasks):

a. Storage monitoring service for dark files

b. Checking file integrity

c. Deleting files and datasets

24

Architecture of Data Management System

Data & Storage Management

Next steps:

1. dsm-inspector:

a. Implement background services for

i. Control file uploads

ii. Control storage utilization

2. dsm-register

a. Implement message processing from the following queues:

i. dsm.register.dataset.closed - Accepting request to close a dataset

ii. dsm.register.dataset.upload - To upload files in a dataset to an

external storage
25

Data consistency

26

