

Проект цифровой платформы для исследования свойств атомов сверхтяжелых элементов

ЦЕЛЬ

 Исследовать область свойства атомов сверхтяжелых элементов, сделав упор на создание цифровой среды/платформы. Которое будет обеспечивать как хранения данных так и сервисы для параллельных вычислений.

ЗАДАЧИ

- Для достижения поставленной цели выделены задачи:
- Обоснование необходимости и возможности разработки системы информационной поддержки платформы.
- оздания информационной среды/платформы, обеспечивающей как хранения данных так и сервисы для параллельных вычислений, актуальна для реализации по сверхтяжелым элементам.
- исследовать свойства атомов сверхтяжёлых элементов

ОБЪЕКТ ИССЛЕДОВАНИЯ

"Исследования свойств атомов размер атомов"

Первые современные оценки размера атомов и количества атомов в данном объеме были сделаны немецким химиком Йозефом Лошмидтом в 1865 году. Он использовал результаты кинетической теории и некоторые приблизительные оценки для своих расчетов.

Размер атомов и расстояние между ними в газообразном состоянии связаны как с сокращением газа при сжижении, так и со средним свободным путем, пройденным молекулами в газе. Средний свободный путь, в свою очередь, можно найти по

теплопроводности и диффузии тарифы на газ. Он рассчитал размер атома и расстояние между атомами, найдя решение, общее для этих соотношений.

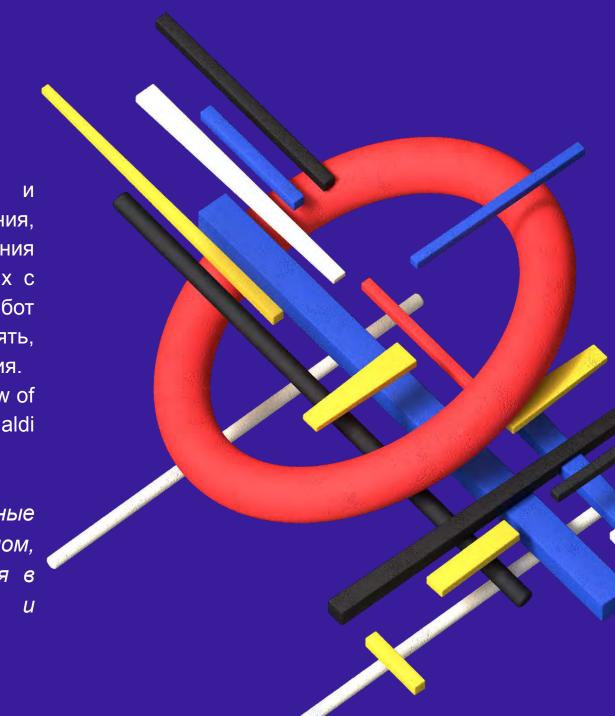
тод	Ряд	группы элементов								
Период		1	п	III	IV	v	VI	VII	VIII	
1	1	(H)						H 1,00797 Водород	Не 4,0026	Обозначение Атомный элемента номер
2	2	Li 3 6,939	Ве 9,0122 Бериллий	B 5 Bop 5	С 12,01115 Углерод	N 7 A307 14,0067	О 8 Кислород	F 9 18,9984	Ne 10 Heon 20,179	Li 3 6,939
3	3	Na 11 Hатрий	Mg 12 Marinia 12	Al 26,9815 Алюминий	Si 14 28,086 Кремий	Р 15 Фосфор	S 16 32,064 Ceps	Cl 17 XAOD 35,453	Аг 18 Аргон 39,948	Относительная атомная масса
4	4	K 19 Ranna 39,102	Са 20 Кельция	21 Sc 44.958 Sc Скандий	22 Ti 47,90 Ti	23 V 50,942 Ванадий	24 51,996 Cr Xpon	25 54,9380 Мп Марганец	26 Fe 55,847 Fe Железо	27 Co 28 Ni 58,71 HHERERL
	5	29 Cu 63,546 Meas	30 Zn 65,37 Цинк	Ga 31 FALKHR 69,72	Ge 32 72,59 Германий	As 33 74,9216 Мышьях	Se 34 78,96	Br 35 79,904 Epon	Кг 36 83,80 Криптон	
5	6	Rb 37 Рубидий	Sr 38 87,62 Стронций	39 Y 88.905 Иттрий	40 Zr 91.22 Ц криовий	41 92,906 Nb Ниобий	42 Мо 95,94 Мо Молиблен	43 Te [99] Texnequi	44 Ru 101.07 Ru Рутений	45 Rh 102,905 Rh POZER 46 Pd Пакладай
	7	47 107,868 Ag Cepe6po	48 Cd 112.40 Cd Кадмий	In 49 Индий 114,82	Sn 50 0aono 118.69	Sb 51 Cypama	Те 52 127,60 Теллур	I 53 Иод 126,9044	Хе 54 Ксенон	
6	8	Cs 55 Lleank 55	Ba 56 Sapuli 127,24	57 La* 138.91 Лантан	72 178,49 Нf Гефиня	73 Ta 180.948 Ta	74 W 183,85 W Вольфрам	75 186,2 Re Рений	76 190.2 Осмий	77 Ir 78 Pt 195,09 Inarrisa
	9	79 196,967 Au Золото	80 Hg 200,49 Pryts	Tl 81 Таллий	Рb 82 Свинец	Ві 83 Висмут	Ро 84 Полоний	At 85 [210]	Rn 86 (222)	
7	10	Fr 87 (223)	Ra 88 (226)	89 Ac** 227] Актиний	104 Rf [261] Резерфордий	105 Db 262 Дубний	106 Sg [263] Сиборгий	107 [262] Вh Ворий	108 [265] Нs Хассия	109 Mt 110 Ds 1266 Майтнерий Даринитацтий
	11	111 Rg [272] Рентгений	112 Сп [285] Колиринция	Nh 113 [286]	FI 114 Фперовий	МС 115 Московий	Lv 116 Ливерморий	Тs 117	Од 118 (294) Оганесон	
Martin 25	3 10.12 Се Церий	59 Рг 60 140,907 14	Nd 61 114714 Неодим Прог	Рт 62 Sn 150,35 Самари	n 63 Eu 6	4 Gd 65 57,26 Гадолиний	Ть 66 D 162,50 Диспроз	у 67 Но 164,930 Гольмий	68 Er 69 167.26 3p6ie8 168,1	Тт 70 Yb 71 Lu 172,04 Иттербий Лютеций
Anta 0424.*	The Toppe	91 Pa 92 (231) Pa 92	8.03 U 93	Np 94 Pt	95 Am	6 Cm 97	Bk 98 (Of 99 Es	100 Fm 101	Md 102 No 103 Lr

Мотивация

Перед каждым физиком (как экспериментатором, так и теоретиком) в его повседневной работе по обработке экспериментальных данных или подготовке новых экспериментов стоят две задачи:

- (1) поиск имеющихся экспериментальных данных о свойствах ядер и ядерных реакций и обработка этих данных,
- (2) анализ изучаемых процессов в рамках надежных теоретических моделей ядерной динамики.

Первую задачу можно решить в лучшем случае следующим образом. Пользователь ищет подходящую ядерную базу, находит нужное ядро и записывает значение нужного ему параметра.


Существует несколько хорошо известных и постоянно обновляемых ядерных баз данных. Однако большинство этих баз данных формируются в виде обычных текстовых таблиц (легкодоступных и видимых через Интернет) или в виде загружаемых файлов. Итак, если вы хотите получить какую-то систематику по группе ядер (например, энергию отделения двух нейтронов от изотопов данного элемента) и посмотреть график, вам придется выписать несколько десятков чисел, произвести некоторые расчеты (даже довольно простой), получить таблицу и использовать какой-нибудь графический пакет, чтобы нарисовать график.

Определение

Поскольку Большие данные эволюционировали быстро и беспорядочно, общепринятого формального утверждения, обозначающего их значение, не существует. Попыток определения Больших данных было немало, более или менее интересных с точки зрения использования и цитирования. Однако авторы работ по тематике Больших данных продолжают расширять, обновлять, предлагать новые, зачастую игнорируя предыдущие определения. В работе «What is Big Data? A Consensual Definition and a Review of Key Research Topics» авторов A.De Mauro, M. Greco и M. Grimaldi предложено так называемое «консенсусное определение»:

«Большие данные представляют собой информационные активы, характеризующиеся таким большим объемом, скоростью и разнообразием, что для их преобразования в ценность требуются специальные технологии и аналитические методы».

Сбор и хранение Больших данных

Ресурсы, выдающие Большие данные могут быть весьма разнообразны. Например:

- Интернет социальные сети, блоки и сайты СМИ, интернет вещей (IoT) и т.п.;
- корпоративные источники, архивы, базы данных и т. п.;
- устройства, собирающие информацию.

Совокупность методик по сбору данных и саму операцию называют Data Mining. В качестве примеров сервисов, осуществляющих процесс сбора информации, можно привести: Qlik, Vertica, Power BI, Tableau. Формат данных, как уже говорилось выше, может быть разнообразным — видео, текст, таблицы, SAS.

Принципы работы

- Горизонтальная адаптивность.
- Стабильность в работе при отказах.
- Локальность данных.

*В настоящее время все системы, работающие с Big Data, соблюдают эти три положения. Чтобы их соблюдать, нужно разрабатывать соответствующие методики и технологии


Как выглядят другие платформы: Ядерные данные и платформы

Центр фотоядерных экспериментальных данных МГУ, В.В.Варламов http://cdfe.sinp.msu.ru/

Центр данных атомной массы http://amdc.in2p3.fr/

Службы ядерных данных, Агентство по ядерной энергии, Франция.

Национальный центр ядерных данных, Брукхейвенская национальная лаборатория, TWBurrows

Ядерные данные и платформы

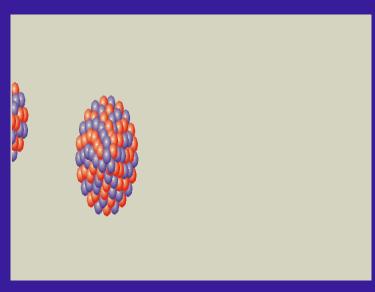
https://groups.nscl.msu.edu

Database on (p,d) and (d,p)

группой HiRA Мичиганского

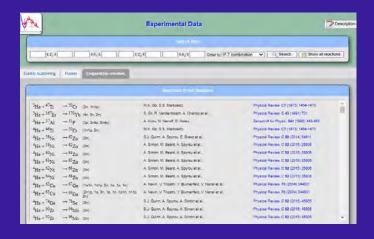
reactions (MSU)

https://wwwndc.jaea.go.jp/ Центр ядерных данных ЈАЕА


Службы ядерных данных https://www.iaea.org

База данных о реакциях(Durham) https://www.hepdata.net/

Синтез

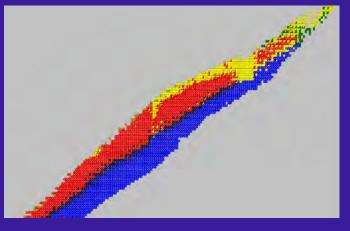

Так почему показал эти платформы?

Хочу объединить все платформы на единую большую информационную базу.

Который будет хранить данные и расчеты делать.

- 🄄 такие как:
- Таблицы нуклидов
- Таблицы ядерных данных
- Максвелловское
- Таблица производства изотопов
- Данные о структуре и распаде
- Вычислительные данные
- Живая диаграмма нуклидов МАГАТЭ:
- 🌣 Ядерные реакции(Упругое, неупругое рассеяние)
- ❖ Функции возбуждения и много чего

Экспериментальные данные



Систематика

CONTENSION AND CONTEN

Энергия разделения Энергия и связи Период полураспада Радиусы заряда Деформации Теория Барьеры и деления

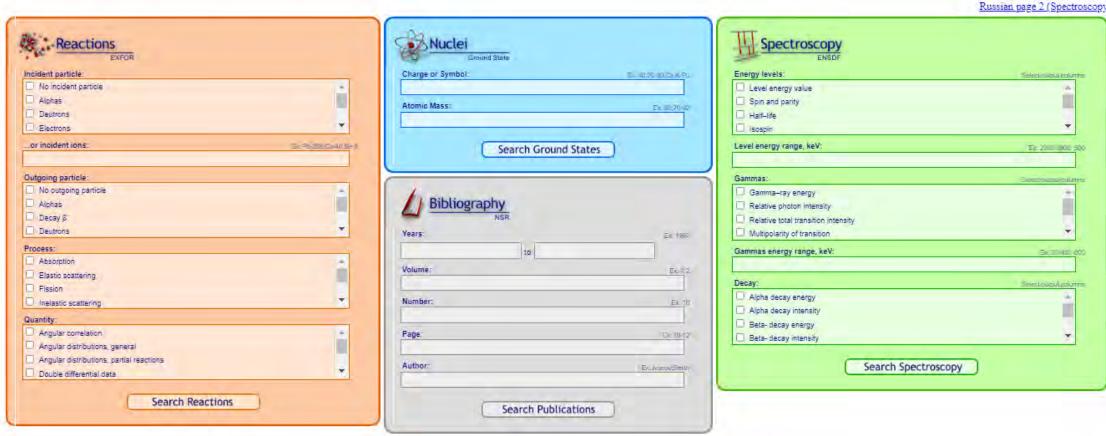
Ядерная карта



Эта диаграмма была разработана в рамках сотрудничества ECOS.

Он содержит данные (изотопы, энергия, интенсивность и т. д.), относящиеся к имеющимся в настоящее время и/или будущим пучкам стабильных ионов на некоторых ядерных объектах в Европе. Данные о других лабораториях, также производящих стабильные пучки, будут добавлены, как только они будут предоставлены этими лабораториями.

Данные приведены для каждого элемента в файле, с которым можно ознакомиться в режиме онлайн и загрузить в виде файла pdf.



Единая цифровая информационная система по ядрам и реакциям

Russian page 1 (Reactions) Russian page 2 (Spectroscopy)

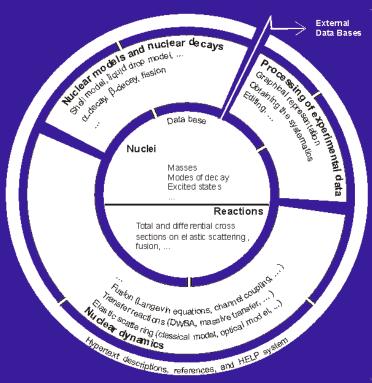
Что представляет NRV

• NRV представляет собой открытую и постоянно расширяемую глобальную систему управления и графического представления ядерных данных и видеографического компьютерного моделирования низкоэнергетической ядерной динамики. Он состоит из полной и обновленной ядерной базы данных и хорошо известных теоретических моделей низкоэнергетических ядерных реакций, которые вместе составляют «базу знаний о низкоэнергетической ядерной области». NRV решает две основные проблемы.

(1) Быстрое и наглядное получение и обработка экспериментальных данных о строении ядер и

ядерных реакциях.

(2) Возможность для любого неопытного пользователя анализировать экспериментальные данные в рамках надежных и широко используемых моделей ядерной динамики.


Система основана на реализации следующих принципиальных вещей:

- Совместимость сети и кода с основными существующими ядерными базами данных.
- Максимальная простота в обращении: расширенное меню, удобный графический интерфейс, гипертекстовое описание моделей и т.д.
- Максимальная визуализация исходных данных, динамики изучаемых процессов и конечных результатов с помощью реальных трехмерных изображений, графиков, таблиц и формул, трехмерной анимации.

Основные идеи и принципиальная схема

Эти хорошо зарекомендовавшие себя и широко используемые модели ядерной динамики низких энергий (такие как оптическая модель, DWBA для реакций переноса и распада, метод связи каналов, транспортные уравнения глубоко неупругого процесса и синтеза, статистическая модель распада горячих ядер, несколько молекулярная динамика тела, оболочечная модель, модель жидкой капли и многие другие) должны быть организованы таким образом, чтобы быть доступными и удобными для любого неопытного (в смысле программирования) ученого, работающего в области ядерной физики низких энергий. Общий набор пересекающихся алгоритмов ядерной динамики должен опираться на экспериментальную ядерную базу данных и управляться единым многостраничным интерфейсом, образующим в совокупности то, что принято называть «базой знаний».

Принципиальная схема базы знаний по низкоэнергетическому ядерному излучению NRV

Создание системы NRV основано на реализации следующих принципиальных положений.

- •Сетевая и программная совместимость с существующими ядерными базами данных. Он предоставляет нам обновляемую и постоянно расширяемую экспериментальную информацию об основных свойствах ядер, таких как массы ядер, режимы распада, периоды полураспада, возбужденные состояния и так далее.
- •Максимальная простота в обращении. Это обеспечивается широко разветвленным меню, наглядным графическим представлением всей информации, гипертекстовыми описаниями, ссылками и справочной системой.
- •Максимальная визуализация всех исходных данных, динамики исследуемого процесса и конечных результатов с помощью реальных изображений, графиков, таблиц, формул и трехмерной анимации.
- •Все программное обеспечение работает под управлением Windows 95/NT. Это решает проблему совместимости системы NRV с любыми периферийными устройствами и с таким широко используемым программным обеспечением, как Corel Draw, Origin, Microsoft Word и другими приложениями Windows.
- •Доступность «базы знаний» через стандартные локальные и глобальные компьютерные сети.

Операционная система и кодирование

Выбор операционной системы очень важен для такого программного обеспечения, как NRV. К сожалению, единой операционной системы, используемой всеми физиками, не существует. Кто-то работает с UNIX, кто-то предпочитает Windows. Мы выбрали второе, потому что, как нам кажется, существует более продвинутое и быстроразвивающееся ПО, созданное именно под Windows. Эта операционная система теперь поддерживается не только IBM, но и персональными компьютерами Macintosh.

Спасибо за внимание!

References

