

ML/DL/HPC Ecosystem of the HybriLIT Heterogeneous Platform (MLIT JINR): New Opportunities for Applied Research

Butenko Yu.¹, Ćosić M.², Nechaevskiy A.¹, Podgainy D.¹, Rahmonov I.¹, Streltsova O.¹, Zuev M.¹

¹ Joint Institute for Nuclear Research ² Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia

This work was supported by the Russian Science Foundation under grant No 22-71-10022

The 6th International Workshop on Deep Learning in Computational Physics (DLCP-2022) Dubna, JINR, 6-8 July 2022

Educational program on the MICC

Training courses, master classes and lectures

Ecosystem for ML/DL/HPC tasks

Relevance of the work

Numerical research process

The creation of a toolkit that allows one to carry out computations, to visualize the results within a single application, and perform the most resource-intensive calculations in parallel is an urgent task. The *Jupyter Notebook* environment provides this capability.

Developed services

saas.jinr.ru

hysical parameters			
Be.	6:	r.	
25	0.1	0.1	
a;	ωF		
0.1	0.5		
-to-dational economics			
alculational parameters			
alculational parameters	T;	Δt:	
alculational parameters	T ₆ 100	Δt: 0.005	
alculational parameters T _{max} : 1000 Io: 0.01	T ₂ 100 Inse: 1.5	Δt: 0.005 Γιώτ	
Tmax: 1000 lo: 0.01 bosas	T; 100 kmai 1.5 kogai	Δt: 0.005 Unin: 0 Unicent:	
Tract 1000 lo: 0.01 0	T ₂ 100 Inse: 1.5 Vose: 0	Δt: 0.005 lain: 0 lanes: 0.1	
Troat 1000 10: 0.01 Iorean 0 Horean 0	Τ _μ 100 Inser 1.5 Vosae 0 Δl ₀	Δt: 0.005 Inter 0.1 Δl(c	

Resources

HybriLIT cluster

the second se
t

02-Apr-2021 11:04	32K
02-Apr-2021 11:04	32K
02-Apr-2021 11:04	32K
02-Apr-2021 11:04	32K
02-Apr-2021 11:03	0
02-Apr-2021 11:04	32K
02-Apr-2021 11:04	32K
02-Apr-2021 11:05	184K
02-Apr-2021 11:05	48K
02-Apr-2021 11:05	75K
02-Apr-2021 11:03	8192
02-Apr-2021 11:05	52K
02-Apr-2021 11:03	8192
02-Apr-2021 11:05	52K
02-Apr-2021 11:03	8192
02-Apr-2021 11:05	50K
02-Apr-2021 11:03	8192
02-Apr-2021 11:02	99
02-Apr-2021 11:05	1594
02-Apr-2021 11:05	36K
	02-Apr-2021 11:04 02-Apr-2021 11:04 02-Apr-2021 11:04 02-Apr-2021 11:04 02-Apr-2021 11:03 02-Apr-2021 11:03 02-Apr-2021 11:04 02-Apr-2021 11:05 02-Apr-2021 11:05 02-Apr-2021 11:05 02-Apr-2021 11:05 02-Apr-2021 11:03 02-Apr-2021 11:03 02-Apr-2021 11:03 02-Apr-2021 11:05 02-Apr-2021 11:03 02-Apr-2021 11:03 02-Apr-2021 11:03

Developed services

sconduct.jinr.ru

Главная Демо модели Публикации Войти

Расчет временной динамики сверхпроводник/ферромагнит/сверхпроводник

Справочные материалы

$m_{\mu}H_{\mu\nu}$, $| = \alpha [m_{1})m_{\mu}H_{\mu}g_{\mu} - m_{\mu}H_{\mu\nu}g_{\mu} + m_{\nu}H_{\mu\nu}g_{\nu}] - H_{\mu\nu}g_{\mu}(m^{2})$

Параметры модели

Выбранный файл: my_time.dat

0.000000	0.000000000000000
0.010000	0.000000000000000
0.020000	0.00000000000000
0.030000	0.000000000000000
0.040000	0.000000000000000
0.050000	0.0000000000000000
0.060000	0.0000000000000000
0.070000	0.00000000000000
0.080000	0.0000000000000000
0.090000	0.0000000000000000
0.100000	0.000000000000000
0.110000	0.0000000000000000
0.120000	0.000000000000000
0.130000	0.000000000000000
0.140000	0.000000000000000
0.150000	0.000000000000000
0.160000	0.000000000000000
0.170000	0.0000000000000000
0.180000	0.0000000000000000
0.190000	0.000000000000000
0.200000	0.000000000000000
0.210000	0.0000000000000000
0.220000	0.0000000000000000
0.230000	0.0000000000000000
0.240000	0.000000000000000
0.250000	0.0000000000000000
0.260000	0.0000000000000000
0.270000	0.000000000000000
0.280000	0.0000000000000000
0.290000	0.0000000000000000
0.300000	0.000000000000000
0.310000	0.0000000000000000
0.320000	0.0000000000000000
0.330000	0.000000000000000
0.340000	0.000000000000000
0.350000	0.0000000000000000
0.360000	0.0000000000000000
0.370000	0.0000000000000000

Примеры реализованных алгоритмов:

21

S

Μ

Полученные файлы:

Python Numerical Methods

pythonnumericalmethods.berkeley.edu

Example 1. Problem to study the dynamics of magnetization in a Phi-0 Josephson Junction (SFS structure)

Collaboration with Ilhom Rahmonov (Bogoliubov Laboratory of Theoretical Physics, JINR)

The dynamics of the magnetic moment M of the system under consideration is described by the Landau-Lifshitz-Gilbert equation:

$$\begin{aligned} \frac{dm_x}{dt} &= -\frac{1}{1+M^2\alpha^2} \{ m_y H_z - m_z H_y + \alpha [m_x(M,H) - H_x] \}, \\ \frac{dm_y}{dt} &= -\frac{1}{1+M^2\alpha^2} \{ m_z H_x - m_x H_z + \alpha [m_y(M,H) - H_y] \} \\ \frac{dm_z}{dt} &= -\frac{1}{1+M^2\alpha^2} \{ m_x H_y - m_y H_x + \alpha [m_z(M,H) - H_z] \}, \end{aligned}$$

 $M = [m_x, m_y, m_z]$ are the magnetic moment components; the effective field components $H = [H_x, H_y, H_z]$ depend on the Josephson phase difference ϕ and are defined as follows:

$$H_x(t) = 0,$$

$$H_y = Gr \sin(\phi(t) - tm_y(t)),$$

$$H_z(t) = m_z(t).$$

The equation for the Josephson phase difference $\phi(t)$ is determined from the equation for the electric current I flowing through the Josephson junction, measured in units of the critical current I_c :

$$\frac{d\phi}{dt} = -\frac{1}{w} \left(\sin(\phi - rm_y) + r\frac{dm_y}{dt} \right) + \frac{1}{w}I,$$

Model parameters:

G – ratio of the Josephson energy to the magnetic anisotropy energy; r – spin-orbit interaction constant; α – Hilbert dissipation parameter; in this study w = 1.

Example 1. Python implementation

Calculations for different values of parameters

To analyze the possibility of reversing the magnetic moment of the ϕ_0 -Josephson junction at different values of the parameters, we will carry out calculations for G=8.9.

from scipy.integrate import solve_ivp
from functools import partial

G=9

s0 = np.array([0, 0, 1, 0]) sol_2=solve_ivp(f,[0,60],s0, t_eval=t_e) # method = 'Radau'

plt.figure(figsize = (8, 6))
plt.plot(t_e,y_I, label= 'Rectangular current pulse')
plt.plot(sol_1.t, sol_1.y[2], label= 'Componet \$m_z \$ at G=8')
plt.plot(sol_2.t, sol_2.y[2], label= 'Componet \$m_z \$ at G=%4.2f' %G)
plt.xlabel('t', size=16)
plt.ylabel('\$m_z(t)\$', size=16)
plt.legend(fontsize=12)
plt.show()

Example 1. Parallel implementation with Python

from joblib import Parallel, delayed import numpy as np
<pre>def funk parall(k):</pre>
i=k%N
j=k//N
mz sol=0
G=G0+delta G*i
alpha=alpha0+delta alpha*j
f = partial(my sfs, G=G, r=r, alpha=alpha,)
As=As, t s=t s, delta t=delta t)
t e=np.linspace(0,60,1000)
s0 = np.arrav([0, 0, 1, 0])
sol i=solve ivp(f,[0,60],s0, t eval=t e) # method = 'Radau'
if sol i.v[2][999] < 0:
m7 so]= -1
$\# a \ln G x \sqrt{i + i^* N_2} = -1$
return mz sol

Serial mode calculation

Define a function called by each process

<pre>t0 = time.time() rez= Parallel(n_jobs=1)\ </pre>	
<pre>(delayed(funk_parall)(k) for</pre>	k in range(N*N))
<pre>t1 = time.time()</pre>	
$print(f'Execution time {t1 - t0})$	s')
princip encoulon cine (ci coj	- /
Execution time 159.9254457950592	s

Computing in Parallel Mode

	t0 = time.time() rez= Parallel(n_jobs=6)\
l	<pre>(delayed(funk_parall)(k) for k in range(N*N))</pre>
	<pre>t1 = time.time()</pre>
	<pre>print(f'Execution time {t1 - t0} s')</pre>
l	Everytion time 24 54502001245025 c
1	EXECUTION TIME 34.31303001345025 2

HLIT-VDI – Virtual desktops system

Superconducting magnet SC200 designed for medical application

Computational mesh

Example 2. MATLAB Integration for Jupyter *

https://jhub2.jinr.ru

* https://www.mathworks.com/products/reference-architectures/jupyter.html

Example 2. MATLAB Integration for Jupyter

Collaboration with Marko Ćosić (Laboratory of Physics, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia)

https://jhub2.jinr.ru

Thanks for your attention!

This work was supported by the Russian Science Foundation under grant No 22-71-10022

The 6th International Workshop on Deep Learning in Computational Physics (DLCP-2022) Dubna, JINR, 6-8 July 2022